問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(5)\ a \lt b を満たす自然数の組a,\ bの和が119、最小公倍数が462であるとき、\\
a=\boxed{\ \ キ\ \ },\ b=\boxed{\ \ ク\ \ }\ である。\hspace{160pt}
\end{eqnarray}
2022立教大学理学部過去問
\begin{eqnarray}
{\large\boxed{1}}(5)\ a \lt b を満たす自然数の組a,\ bの和が119、最小公倍数が462であるとき、\\
a=\boxed{\ \ キ\ \ },\ b=\boxed{\ \ ク\ \ }\ である。\hspace{160pt}
\end{eqnarray}
2022立教大学理学部過去問
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(5)\ a \lt b を満たす自然数の組a,\ bの和が119、最小公倍数が462であるとき、\\
a=\boxed{\ \ キ\ \ },\ b=\boxed{\ \ ク\ \ }\ である。\hspace{160pt}
\end{eqnarray}
2022立教大学理学部過去問
\begin{eqnarray}
{\large\boxed{1}}(5)\ a \lt b を満たす自然数の組a,\ bの和が119、最小公倍数が462であるとき、\\
a=\boxed{\ \ キ\ \ },\ b=\boxed{\ \ ク\ \ }\ である。\hspace{160pt}
\end{eqnarray}
2022立教大学理学部過去問
投稿日:2022.09.14