一橋大学 確率 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

一橋大学 確率 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
2016一橋大学過去問題
硬貨が2枚ある。最初は2枚とも表の状態で置かれている。次の操作をn回行った後、硬貨が2枚とも裏になっている確率を求めよ。
(操作)2枚とも表、又は2枚とも裏のとき、2枚とも投げる。表裏各1枚のときには表の硬貨だけ投げる。
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2016一橋大学過去問題
硬貨が2枚ある。最初は2枚とも表の状態で置かれている。次の操作をn回行った後、硬貨が2枚とも裏になっている確率を求めよ。
(操作)2枚とも表、又は2枚とも裏のとき、2枚とも投げる。表裏各1枚のときには表の硬貨だけ投げる。
投稿日:2018.04.26

<関連動画>

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
$1^{2001}+2^{2001}+3^{2001}+\cdots+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ.
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(5)〜確率漸化式の基本

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)地点Aと地点Bがあり、Kさんは時刻0に地点Aにいる。Kさんは1秒ごとに以下の確率で移動し、時刻0からn秒後に地点Aか地点Bにいる。
$\left\{\begin{array}{1}
・地点Aにいるとき\\
\frac{1}{2}の確率で地点Aにとどまり、\frac{1}{2}の確率で地点Bに移動する。\\
・地点Bにいるとき
\frac{1}{6}の確率で地点Bにとどまり、\frac{5}{6}の確率で地点Aに移動する。\\
\end{array}\right.$
Kさんが時刻0からn秒後に地点Aにいる確率を$a_n$、地点Bにいる確率を$b_n$で表す。ただし、nは0以上の整数とする。
(i)$a_{n+1}$を$a_n$と$b_n$で表すと$a_{n+1}$=$\boxed{\ \ サ\ \ }$$a_n$+$\boxed{\ \ シ\ \ }$$b_n$であり、$a_4$=$\boxed{\ \ ス\ \ }$
(ii)数列{$a_n$}の一般項$a_n$をnの式で表すと$\boxed{\ \ セ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

選択肢だけで答えが分かる裏技

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
選択肢だけで答えが分かる裏技に関して解説します。
この動画を見る 

福田の数学〜浜松医科大学2024医学部第2問〜日本シリーズ形式の確率とシグマに関する等式の証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。なお、${}_n \mathrm{ C }_r$は二項係数を表す。
(1) AさんとBさんが将棋の対局を繰り返し行い、先に3回勝った方が優勝するものとする。AさんがBさんに1回の対局で勝つ確率は$p$であるとする。また各対局において引き分けはないものとする。このとき、Aさんが優勝する確率を$p$の式として表せ。
(2) (1) において $p = 0.75$ であるときに、Aさんが優勝する確率を、小数第3位を四捨五入して小数第2位まで求めよ。
(3) (1) において「先に3回」を「先に$N$回」 ($N$は2以上の自然数)にしたときの Aさんが優勝する確率を$p$と$N$の式として表せ。必要ならば和の記号$\sum$や二項係数${}_n \mathrm{ C }_r$を用いてもよい。
(4) すべての自然数$m$について
$\displaystyle \sum_{k=1}^m \displaystyle \frac{{}_{m+k} \mathrm{ C }_k}{2^k} = 2^m-1$
であることを証明せよ。
この動画を見る 

【数A】【場合の数】3つの集合 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1から100までの整数のうち、次のような数は何個あるか。
     (1)2,3,7の少なくとも1つで割り切れる数
     (2)2では割り切れるが、3でも7でも割り切れない数
この動画を見る 
PAGE TOP