静岡大 漸化式 数列の最大値 - 質問解決D.B.(データベース)

静岡大 漸化式 数列の最大値

問題文全文(内容文):
$a_1=\displaystyle \frac{19}{3}$
$a_{n+1}=2a_n-n・2^{n+1}+\displaystyle \frac{13}{3}・2^n$
$a_n$が最大となる$n$と$a_n$の最大値を求めよ

出典:2016年静岡大学 過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=\displaystyle \frac{19}{3}$
$a_{n+1}=2a_n-n・2^{n+1}+\displaystyle \frac{13}{3}・2^n$
$a_n$が最大となる$n$と$a_n$の最大値を求めよ

出典:2016年静岡大学 過去問
投稿日:2019.10.03

<関連動画>

18神奈川県教員採用試験(数学:数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$S_n = \displaystyle \sum_{k=1}^n a_k$
$S_n = 2a_n+4n -3 (n=1,2,3,\cdots)$ のとき$a_n$を求めよ。
この動画を見る 

17愛知県教員採用試験(数学:6番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
6⃣$2na_n=\displaystyle \sum_{k=1}^n k a_k+n$
$a_n$を求めよ。
この動画を見る 

福田の数学〜立教大学2023年理学部第4問〜数学的帰納法とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 正の数列$x_1$,$x_2$,$x_3$,...,$x_n$,... は以下を満たすとする。
$x_1$=8, $x_{n+1}$=$\sqrt{1+x_n}$ ($n$=1,2,3,...)
このとき、次の問いに答えよ。
(1)$x_2$,$x_3$,$x_4$をそれぞれ求めよ。
(2)すべての$n$≧1について($x_{n+1}$-$\alpha$)($x_{n+1}$+$\alpha$)=$x_n$-$\alpha$ となる定数$\alpha$で、
正であるものを求めよ。
(3)$\alpha$を(2)で求めたものとする。すべての$n$≧1について$x_n$>$\alpha$であることを$n$に関する数学的帰納法で示せ。
(4)極限値$\displaystyle\lim_{n \to \infty}x_n$を求めよ。
この動画を見る 

#14 数検1級1次過去問 数列 数検・教員採用試験

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#その他#数学検定#数学検定1級#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$

$A=\begin{pmatrix}
3 & 0 & 2 \\
-4 & 1 & -3 \\
1 & 5 & -2
\end{pmatrix}$

次の行列を,$\ell A^2+mA+nE$で表せ.
$(\ell,m,n=IR)$

(1)$A^3$
(2)$A^5-5A^4+16A^3-24A^2$
この動画を見る 

福田の数学〜立教大学2025経済学部第1問(3)〜等差中項と等比中項

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)$x,y,z$は実数であり、$x\lt y$を満たすとする。

$3$つの数$3,x,y$がこの順に等差数列となり、

さらに$4$つの数$4,x,y,z$がこの順に

等差数列となるとき、

$x=\boxed{ウ}、\boxed{エ}、\boxed{オ}$である。

$2025$年立教大学経済学部過去問題
この動画を見る 
PAGE TOP