静岡大 漸化式 数列の最大値 - 質問解決D.B.(データベース)

静岡大 漸化式 数列の最大値

問題文全文(内容文):
$a_1=\displaystyle \frac{19}{3}$
$a_{n+1}=2a_n-n・2^{n+1}+\displaystyle \frac{13}{3}・2^n$
$a_n$が最大となる$n$と$a_n$の最大値を求めよ

出典:2016年静岡大学 過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=\displaystyle \frac{19}{3}$
$a_{n+1}=2a_n-n・2^{n+1}+\displaystyle \frac{13}{3}・2^n$
$a_n$が最大となる$n$と$a_n$の最大値を求めよ

出典:2016年静岡大学 過去問
投稿日:2019.10.03

<関連動画>

福田の数学〜早稲田大学2024社会科学部第3問〜集合と数列

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$n$を$n \geqq 3$である自然数とする。相異なる$n$個の正の数を小さい順に並べた集合$S=${ $a_{ 1 },a_{ 2 }・・・,a_{ n } $}を考える。$a_{ 1 }=k$とするとき、次の問いに答えよ。
(1)$a_{ i }-a_{ 1 }$$(i=2,3,・・・,n)$がすべての$S$の要素となるとき、$a_{ 2 }$を求めよ。
(2)(1)のとき、$a_{ n }$を$n$の式で表せ。
(3)$\frac{a_{ i }}{a_{ 1 }}$$(i=2,3,・・・,n)$がすべての$S$の要素となるとき、$a_{ n }$を$n$の式で表せ。
この動画を見る 

2023年京大の漸化式!典型的なパターンが詰まった問題です【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
{${ a_n}$}は次の条件を満たしている。

${ a_1}=3$、${ a_n}=\displaystyle \frac{{ S_n}}{n}+(n-1)・2^{n}(n=2,3,4…)$

ただし,${ S_n}={ a_1}+{ a_2}+・・・+{ a_n}$である。このとき、数列{${ a_n}$}の一般項を求めよ。

京都大過去問
この動画を見る 

早稲田(教育)見た目は数2か数3 中身は中学入試

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#数列#早稲田大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=a_2=1,a_{n+2}=a_{n+1}+a_n,\displaystyle \sum_{n=1}^{2019} ia_n,$
$i$は虚数単位である.これを解け.

早稲田大(教育)過去問
この動画を見る 

質問に対する返答です。整数問題,数列の和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1 \leqq t< u < v \leqq 6m$
$t+u+v=6m$
この動画を見る 

秋田大 慶応大 3次方程式 Σ 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#数列とその和(等差・等比・階差・Σ)#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#秋田大学#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
秋田大学過去問題
$2x^3-3x^2+ax-1=0$の1つの解は$x=\frac{1}{2}$,他の解をα,βとしたとき、$α^{30}+β^{30}$の値

慶応義塾大学過去問題
$\displaystyle\sum_{k=1}^nk・2^{k+2}$の値をnで表せ
この動画を見る 
PAGE TOP