大学入試問題#436「2次試験までに一度は解くべき問題!!」 東京大学(1995) #不等式 - 質問解決D.B.(データベース)

大学入試問題#436「2次試験までに一度は解くべき問題!!」 東京大学(1995) #不等式

問題文全文(内容文):
すべての正の実数$x,y$に対し、
$\sqrt{ x }+\sqrt{ y } \leqq k\sqrt{ 2x+y }$ が成り立つような実数$k$の最小値を求めよ

出典:1995年東京大学 入試問題
チャプター:

00:00 イントロ(問題紹介)
00:13 本編スタート
05:07 作成した解答①
05:17 作成した解答②
05:48 エンディング(楽曲提供:兄いえてぃさん)

単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
すべての正の実数$x,y$に対し、
$\sqrt{ x }+\sqrt{ y } \leqq k\sqrt{ 2x+y }$ が成り立つような実数$k$の最小値を求めよ

出典:1995年東京大学 入試問題
投稿日:2023.01.28

<関連動画>

福田の数学〜筑波大学2022年理系第5問〜関数の増減と最大値

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=(x+1)e^{-x} (x \gt -1)$上の点Pにおける法線とx軸との交点をQとする。
点Pのx座標をtとし、点Qと点R(t,0)との距離をd(t)とする。
(1) d(t)をtを用いて表せ。
(2) $x \geqq 0$のとき $e^x \geqq 1+x+\frac{x^2}{2}$であることを示せ。
(3) 点Pが曲線C上を動くとき、d(t)の最大値を求めよ。

2022筑波大学理系過去問
この動画を見る 

名古屋市立(医)lim(x→0)sinx/x=1証明 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
名古屋市立大学過去問題
$\displaystyle \lim_{ x \to 0 } \frac{sinx}{x}=1$
この動画を見る 

福田の数学〜微分可能である条件とは何か〜明治大学2023年理工学部第1問(1)〜微分可能であるための条件

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)$a$,$b$,$c$を実数の定数とし、関数$f(x)$を
$f(x)$=$\left\{\begin{array}{1}
\displaystyle\frac{1+3x-a\cos 2x}{4x} (x>0)\\
bx+c       (x≦0)\\
\end{array}\right.$
で定める。$f(x)$が$x$=0で微分可能であるとき
$a$=$\boxed{\ \ ア\ \ }$, $b$=$\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }}$, $c$=$\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$
である。
この動画を見る 

福田のわかった数学〜高校3年生理系077〜極値(1)極大値をもつ条件

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極値(1)
$f(x)=\frac{a-\cos x}{a+\sin x}\ が0 \lt x \lt \frac{\pi}{2}$の範囲で
極大値をもつように定数aの値の範囲を定めよ。
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第1問(1)〜解と係数の関係と3次関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#解と判別式・解と係数の関係#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1)mを実数とする。xについての2次方程式$x^2-(m+3)x+m^2-9=0$の
二つの解を$α,β$とする。$α,β$が実数であるための必要十分条件は$- \boxed{ア} \leqq m \leqq \boxed{イ}$である。
mが$- \boxed{ア} \leqq m \leqq \boxed{イ}$の範囲を動くときの
$α^3+β^3$の最小値は$\boxed{ウ}$、最大値は$\boxed{エオカ}$である。
この動画を見る 
PAGE TOP