記号は数II,中身は難関中学入試 - 質問解決D.B.(データベース)

記号は数II,中身は難関中学入試

問題文全文(内容文):
$ a_n=[\log_4 n],\displaystyle \sum_{k=1}^n a_k=1104$
nの値を求めよ.
単元: #数Ⅱ#数列#過去問解説(学校別)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_n=[\log_4 n],\displaystyle \sum_{k=1}^n a_k=1104$
nの値を求めよ.
投稿日:2022.05.12

<関連動画>

福田の数学〜東京工業大学2023年理系第3問〜複素数の絶対値と偏角に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#漸化式#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数が書かれた3枚のカード$\boxed{0}$,$\boxed{1}$,$\boxed{\sqrt 3}$から無作為に2枚のカードを順に選び、出た実数を順に実部と虚部にもつ複素数を得る操作を考える。正の整数nに対して、この操作をn回繰り返して得られるn個の複素数の積を$z_n$で表す。
(1)|$z_n$|<5となる確率$P_n$を求めよ。
(2)$z_n^2$が実数となる確率$Q_n$を求めよ。

2023東京工業大学理系過去問
この動画を見る 

東京海洋大学 漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2013東京海洋大学過去問題
$a_1 = 1 \quad n=1,2,3\cdots$
$a_{n+1} = 27^{n^2-3n-9}a_n$
(1)一般項$a_n$を求めよ
(2)$a_n$が最小となるnの値
この動画を見る 

福田の数学〜立教大学2023年経済学部第2問〜利息計算と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 1年目の初めに新規に100万円を預金し、2年目以降の毎年初めに12万円を追加で預金する。ただし、毎年の終わりに、その時点での預金額の8%が利子として預金に加算される。自然数$n$に対して、$n$年目の終わりに利子が加算された後の預金額を$S_n$万円とする。このとき、以下の問いに答えよ。
ただし、$\log_{10}2$=0.3010, $\log_{10}3$=0.4771とする。
(1)$S_1$, $S_2$をそれぞれ求めよ。
(2)$S_{n+1}$を$S_n$を用いて表せ。
(3)$S_n$を$n$を用いて表せ。
(4)$\log_{10}1.08$を求めよ。
(5)$S_n$>513 を満たす最小の自然数$n$を求めよ。
この動画を見る 

福田のおもしろ数学411〜漸化式で定まる数列の2020項までの和と2030項までの和から2025項までの和を求める

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

数列$\{a_n\}$は$a_n=a_{n-1}-a_{n-2} (n\geqq 3)$を

満たしている。

$\displaystyle \sum_{n=1}^{2020}=2030$ $\quad $ $\displaystyle \sum_{n=1}^{2030}=2020$

を満たすとき

$\displaystyle \sum_{n=1}^{2025} a_n$の値を求めよ。
    
この動画を見る 

【高校数学】 数B-68 等比数列とその和④

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
初項$a$,公比$r$,項数$n$の等比数列の和を$S_n$とすると
$r \neq 1$のとき,$S_n=①=②$
$r=1$のとき,$S_n=③$

次の等比数列の初項から第$n$項までの和と第5項までの和を求めよう.

④$1,3,9,・・・$

⑤$-2,-2,-2,・・・$

⑥$-1,2,-4,・・・$
この動画を見る 
PAGE TOP