福田の数学〜明治大学2022年理工学部第1問(1)〜整式と二項定理とドモアブルの定理 - 質問解決D.B.(データベース)

福田の数学〜明治大学2022年理工学部第1問(1)〜整式と二項定理とドモアブルの定理

問題文全文(内容文):
(1)$f(x)=(x+2)(x-1)^{10}$とし、この式を展開して
$f(x)=a_0+a_1x+a_2x^2+...+a_{11}x^{11}$
と表す。ただし、$a_0,a_1,...,a_{11}$は定数である。
$(\textrm{a})$多項式$f(x)$を$x-2$で割った時の余りは$\boxed{ア}$である。
$(\textrm{b})a_{10}=-\ \boxed{イ}$である。
$(\textrm{c})a_0+a_2+a_4+a_6+a_8+a_{10}=\boxed{ウエオ}$である。
$(\textrm{d})\ \ \ \ f(i)=\boxed{カキ}-\boxed{クケ}\ i \ $である。ただし、$i$は虚数単位である。

2022明治大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)$f(x)=(x+2)(x-1)^{10}$とし、この式を展開して
$f(x)=a_0+a_1x+a_2x^2+...+a_{11}x^{11}$
と表す。ただし、$a_0,a_1,...,a_{11}$は定数である。
$(\textrm{a})$多項式$f(x)$を$x-2$で割った時の余りは$\boxed{ア}$である。
$(\textrm{b})a_{10}=-\ \boxed{イ}$である。
$(\textrm{c})a_0+a_2+a_4+a_6+a_8+a_{10}=\boxed{ウエオ}$である。
$(\textrm{d})\ \ \ \ f(i)=\boxed{カキ}-\boxed{クケ}\ i \ $である。ただし、$i$は虚数単位である。

2022明治大学理工学部過去問
投稿日:2022.09.05

<関連動画>

【高校数学】恒等式とは?分かりやすく~どこよりも丁寧に~ 1-7【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
恒等式とは何なのか?を説明しています。
この動画を見る 

中学生向け「どっちがでかい?」

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$\dfrac{10^{2021}+1}{10^{2022}+1}$ VS $\dfrac{10^{2022}+1}{10^{2023}+1}$
この動画を見る 

福田のおもしろ数学412〜正n角形の内部の点から各辺に下ろした垂線の長さに関する不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

一辺の長さ$a$の正$n$角形の内部に点$X$をとる。

$X$から各辺またはその延長に下ろした垂線の長さを

$h_1,h_2,\cdots h_n$とする。

$\dfrac{1}{h_1}+\dfrac{1}{h_2}+\cdots +\dfrac{1}{h_n} \gt \dfrac{2\pi}{a}$

であることを証明して下さい。

図は動画内参照
   
この動画を見る 

福田の数学〜東京大学2023年理系第5問〜整式の割り算と2重因子をもつ条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 整式f(x)=$(x-1)^2(x-2)$を考える。
(1)g(x)を実数を係数とする整式とし、g(x)をf(x)で割った余りをr(x)とおく。
$g(x)^7$をf(x)で割った余りと$r(x)^7$をf(x)で割った余りが等しいことを示せ。
(2)a,bを実数とし、h(x)=$x^2$+ax+b とおく。$h(x)^7$をf(x)で割った余りを$h_1(x)$とおき、$h_1(x)^7$をf(x)で割った余りを$h_2(x)$とおく。$h_2(x)$がh(x)に等しくなるようなa,bの組を全て求めよ。

2023東京大学理系過去問
この動画を見る 

【高校数学】  数Ⅱ-2  パスカルの三角形

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$(a+b)^1$

$(a+b)^2$

$(a+b)^3$

$(a+b)^4$
これにより$(a+b)^4=$①________ということがわかる。
※図は動画内参照

◎パスカルの三角形を利用して、展開しよう。
②$(a+b)^5$

③$(x-1)^6$

④$(2x-1)^4$
この動画を見る 
PAGE TOP