福田の数学〜東京理科大学2023年創域理工学部第1問(2)〜高次方程式と解と係数の関係 - 質問解決D.B.(データベース)

福田の数学〜東京理科大学2023年創域理工学部第1問(2)〜高次方程式と解と係数の関係

問題文全文(内容文):
$\Large\boxed{1}$ (2)A, B, C, Dを定数とする。$f(x)$=$2x^3$-$9x^2$+$Ax$+$B$, $g(x)$=$x^2$-$Cx$-$D$
とおく。以下の問いに答えよ。
(a)$g(1-\sqrt 2)$=0 かつ $g(1+\sqrt 2)$=0のとき、$C$=$\boxed{\ \ セ\ \ }$, $D$=$\boxed{\ \ ソ\ \ }$である。また、$f(1-\sqrt 2)$=0 かつ $f(1+\sqrt 2)$=0のとき、$A$=$\boxed{\ \ タ\ \ }$, $B$=$\boxed{\ \ チ\ \ }$であり、方程式$f(x)$=0を満たす有理数$x$は
$x$=$\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}$
である。
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)A, B, C, Dを定数とする。$f(x)$=$2x^3$-$9x^2$+$Ax$+$B$, $g(x)$=$x^2$-$Cx$-$D$
とおく。以下の問いに答えよ。
(a)$g(1-\sqrt 2)$=0 かつ $g(1+\sqrt 2)$=0のとき、$C$=$\boxed{\ \ セ\ \ }$, $D$=$\boxed{\ \ ソ\ \ }$である。また、$f(1-\sqrt 2)$=0 かつ $f(1+\sqrt 2)$=0のとき、$A$=$\boxed{\ \ タ\ \ }$, $B$=$\boxed{\ \ チ\ \ }$であり、方程式$f(x)$=0を満たす有理数$x$は
$x$=$\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}$
である。
投稿日:2023.10.09

<関連動画>

07和歌山県教員採用試験(数学:4番 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$z_0=2$
$z=\displaystyle \frac{1}{2}(\cos\displaystyle \frac{\pi}{3}+i\ \sin\displaystyle \frac{\pi}{3})$
$z_n=z\ z_{n-1}$
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n|z_{k+1}-z_k|$を求めよ。

出典:和歌山県教員採用試験
この動画を見る 

14兵庫県教員採用試験(数学:1-5番 解と係数の関係)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#複素数と方程式#図形と計量#三角比(三角比・拡張・相互関係・単位円)#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(5)
$8x^2+kx-3=0,x=sinθ,cosθ$のときkの値を求めよ。
この動画を見る 

剰余

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$111^{2021}$を$1111$で割った余りを求めよ.
この動画を見る 

実数解の個数 山梨大 三次方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2x^3-3kx^2+1=0$
(1)
実数解が1つである$k$の範囲は?

(2)
実数解が1つでその絶対値が1未満である$k$の範囲は?

出典:2002年山梨大学 過去問
この動画を見る 

21三重県教員採用試験(数学:1-(3) 解と係数の関係)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(3)$
$x^3+ax^2+bx+21=0$の1つの解が
$x=2+\sqrt3 i$のとき
$a,b$の値と実数解を求めよ.
この動画を見る 
PAGE TOP