式の値 國學院久我山 - 質問解決D.B.(データベース)

式の値 國學院久我山

問題文全文(内容文):
ab=6, ab=2のときa2b2=?
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
ab=6, ab=2のときa2b2=?
投稿日:2024.04.06

<関連動画>

素因数分解しろ! prime factorization

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2581
この動画を見る 

福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART3

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
3 点Oを原点とする座標平面上の0でない2つのベクトル
m=(a, c), n=(b, d)
に対して、D=ad-bc とおく。座標平面上のベクトルqに対して、次の条件を考える。
条件Ⅰ rm+sn=qを満たす実数r, sが存在する。
条件Ⅱ rm+sn=qを満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべてのqに対して成り立つとする。D 0であることを示せ。
以下、D 0であるとする。
(2)座標平面上のベクトルv, w
mv=nw=1, mw=nv=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトルqに対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。

2023九州大学理系過去問
この動画を見る 

高校入試レベルだよ

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
高校入試レベルの図形の問題です.
この動画を見る 

一橋大 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2005一橋大学過去問題
(1)P,2P+1,4P+1がいずれも素数となるようなPをすべて求めよ。
(2)q,2q+1,4q-1,6q-1,8q+1がいずれも素数となるようなqをすべて求めよ。
この動画を見る 

正方形と円

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
円の半径=?
*図は動画内参照
この動画を見る 
PAGE TOP preload imagepreload image