中央値 2023中央大附属 - 質問解決D.B.(データベース)

中央値  2023中央大附属

問題文全文(内容文):
15,a,20,b,11,24
平均値=17 , 中央値=16.5
a=? b=?
(ただし、a<b))

2023中央大学付属高等学校
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
15,a,20,b,11,24
平均値=17 , 中央値=16.5
a=? b=?
(ただし、a<b))

2023中央大学付属高等学校
投稿日:2023.10.01

<関連動画>

2=3

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2x+2 = 3x+3
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第1問〜絶対値の付いた2次関数の最小値(難)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$0 \leqq a \leqq b \leqq 1$を満たすa,bに対し、関数
$f(x)=|x(x-1)|+|(x-a)(x-b)|$
を考える。xが実数の範囲を動くとき、$f(x)$は最小値mをもつとする。
(1)$x \lt 0$および$x \gt 1$では$f(x) \gt m$となることを示せ。
(2)$m=f(0)$または$m=f(1)$であることを示せ。
(3)$a,b$が$0 \leqq a \leqq b \leqq 1$を満たして動くとき、mの最大値を求めよ。

2022北海道大学理系過去問
この動画を見る 

【数学Ⅰ/中間テスト対策】たすきがけを使う因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$3x^2+7x-6$を因数分解せよ
この動画を見る 

福田の数学〜立教大学2022年経済学部第1問(2)〜絶対の付いた方程式の解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$|X-|X-2||=1$の解をすべて求めよ

2022立教大学経済学部過去問
この動画を見る 

論理と集合「集合の記号」の全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.
次の問いに答えよ。ただし、$\sqrt{ 7 }$は無理数であることを用いてよい。
$A$を有理数全体の集合、$B$を無理数全体の集合とし、空集合を$\varnothing$と表す。
次の(ⅰ)~(ⅳ)が真の命題となるように□に当てはまる記号を次の⓪~⑤の中から1つ選べ。
ただし、同じものを繰り返しでもよい。
(ⅰ)$A□\{0\}$
(ⅱ)$\sqrt{ 28 }□B$
(ⅲ)$A=\{-\}□A$
(ⅳ)$\varnothing=A□B$

⓪$ \in $
①$ \ni $
②$ \subset $
③$ \supset $
④$ \cap $
⑤$ \cup $
この動画を見る 
PAGE TOP