大学入試問題#839「解法見えれば余裕!」 #上智大学(2005) #数列 - 質問解決D.B.(データベース)

大学入試問題#839「解法見えれば余裕!」 #上智大学(2005) #数列

問題文全文(内容文):
$a_n=\displaystyle \frac{2n・3^n}{(2n+1)(2n+3)}$のとき、
$S_n=\displaystyle \frac{3^{n+1}}{2(2n+3)}-\displaystyle \frac{1}{2}$であることを示せ。

出典:2005年上智大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a_n=\displaystyle \frac{2n・3^n}{(2n+1)(2n+3)}$のとき、
$S_n=\displaystyle \frac{3^{n+1}}{2(2n+3)}-\displaystyle \frac{1}{2}$であることを示せ。

出典:2005年上智大学
投稿日:2024.06.04

<関連動画>

大学入試問題#641「基本問題」 埼玉大学(2007) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^3-4x^2-x^2}{x^2-5x+4} dx$

出典:2007年埼玉大学 入試問題
この動画を見る 

京都大 3次関数 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+2x^2+2$
$|f(n)$と$|f(n+1)|$がともに素数となるような整数$n$を求めよ

出典:2019年京都大学 過去問
この動画を見る 

#宮崎大学 2023年 #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{0} log(x+3) dx$

出典:2023年宮崎大学
この動画を見る 

大学入試問題#743「単なる場合分け?」 早稲田大学政治経済学部(2003) #対数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a \gt 0,a \neq 1$とする。
このとき、$x$の不等式$log_a(x+2) \geq log_{a^2}(3x+16)$を解け

出典:2003年早稲田大学政治経済学部 入試問題
この動画を見る 

福田の数学〜早稲田大学2025人間科学部第1問(1)〜4次式の因数分解と未定係数法

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)整式$x^4-13x^2+18x-5$を整数係数の

範囲で因数分解すると

$(x^2+\boxed{ア} x+\boxed{イ})(x^2+\boxed{ウ}x+\boxed{エ})$

となる。

ただし、$\boxed{ア}\lt \boxed{ウ}$とする。

$2025$年早稲田大学人間科学部過去問題
この動画を見る 
PAGE TOP