【誘導あり 概要欄】大学入試問題#24 富山大学(2020) 微積の応用 - 質問解決D.B.(データベース)

【誘導あり 概要欄】大学入試問題#24 富山大学(2020) 微積の応用

問題文全文(内容文):
(1)
$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$
$x\ \cos\theta-\sin\theta=0$のとき
$\sin\theta,\cos\theta$を$x$で表せ。

(2)
$x \gt 0$
$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}|x\ \cos\ t-\sin\ t|dt$の最小値を求めよ。

出典:2020年富山大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#富山県立大学
指導講師: ますただ
問題文全文(内容文):
(1)
$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$
$x\ \cos\theta-\sin\theta=0$のとき
$\sin\theta,\cos\theta$を$x$で表せ。

(2)
$x \gt 0$
$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}|x\ \cos\ t-\sin\ t|dt$の最小値を求めよ。

出典:2020年富山大学 入試問題
投稿日:2021.10.02

<関連動画>

福田の数学〜慶應義塾大学看護医療学部2025第1問(2)〜対数不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)不等式$2(\log_3 x)^2+2\log_9 x \gt 1$を解くと

$\boxed{イ}$である。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 

福田の数学〜名古屋大学2023年理系第2問〜回転体の体積と関数の増減と最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#面積、体積#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 0<b<a とする。xy平面において、原点を中心とする半径rの円Cと点(a, 0)を中心とする半径bの円Dが2点で交わっている。
(1)半径rの満たすべき条件を求めよ。
(2)CとDの交点のうちy座標が正のものをPとする。Pのx座標h(r)を求めよ。
(3)点Q(r, 0)と点R(a-b, 0)をとる。Dの内部にあるCの弧PQ、線分QR、および線分RPで囲まれる図形をAとする。xyz空間においてAをx軸の周りに1回転して得られる立体の体積V(r)を求めよ。ただし答えにh(r)を用いてもよい。
(4)(3)の最大値を与えるrを求めよ。また、そのrをr(a)とおいたとき、
$\displaystyle\lim_{a \to \infty}(r(a)-a)$を求めよ。

2023名古屋大学理系過去問
この動画を見る 

数学「大学入試良問集」【7−6 正方形と長方形の共有面積】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
座標平面上に4点$O(0,0),A(2,0),B(2,1),C(0,1)$がある。
実数$a$に対して4点$P(a+1,a),Q(a,a+1),R(a-1,a),S(a,a-1)$をとる。
このとき、次の問いに答えよ。
(1)
長方形$QABC$と正方形$PQRS$が共有点をもつような$a$の範囲を求めよ。

(2)
長方形$OABC$と正方形$PQRS$の共通部分の面積が最大となる$a$の値と、そのときの共通部分の面積を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題048〜早稲田大学2019年度商学部第1問(1)〜2変数の三角関数の最大最小問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)$\alpha,\beta$を実数とする。
$2\cos\alpha\sin\beta+3\sin\alpha\sin\beta+4\cos\beta$
の最小値は$\boxed{ア}$である。

2019早稲田大学商学部過去問
この動画を見る 

福田の数学〜早稲田大学2025教育学部第1問(1)〜シグマ計算

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)$k$を自然数とする。次の数

$-1^2+2^2-3^2+4^2-5^2+6^2- \cdots -(2k-1)^2+(2k)^2$

を$k$を用いて表せ。

$2025$年早稲田大学教育学部過去問題
この動画を見る 
PAGE TOP