問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} (1)\ k \gt 0として、次の定積分を考える。\hspace{130pt}\\
F(k)=\int_0^1\frac{e^{kx}-1}{e^{kx}+1}\ dx\\
このとき、F(2)=\log(\boxed{\ \ ア\ \ })となる。また、\lim_{k \to \infty}F(k)=\boxed{\ \ イ\ \ }\ である。\\
\\
\boxed{\ \ ア\ \ }\ の解答群\\
⓪\ \frac{e+1}{e} ①\ \frac{e^2+1}{e} ②\ \frac{e^4+1}{e} ③\ \frac{e^6+1}{e} ④\ \frac{e^8+1}{e}\\
⑤\ \frac{e+1}{2e} ⑥\ \frac{e^2+1}{2e} ⑦\ \frac{e^4+1}{2e} ⑧\ \frac{e^6+1}{2e} ⑨\ \frac{e^8+1}{2e}
\end{eqnarray}
2021明治大学全統過去問
\begin{eqnarray}
{\Large\boxed{3}} (1)\ k \gt 0として、次の定積分を考える。\hspace{130pt}\\
F(k)=\int_0^1\frac{e^{kx}-1}{e^{kx}+1}\ dx\\
このとき、F(2)=\log(\boxed{\ \ ア\ \ })となる。また、\lim_{k \to \infty}F(k)=\boxed{\ \ イ\ \ }\ である。\\
\\
\boxed{\ \ ア\ \ }\ の解答群\\
⓪\ \frac{e+1}{e} ①\ \frac{e^2+1}{e} ②\ \frac{e^4+1}{e} ③\ \frac{e^6+1}{e} ④\ \frac{e^8+1}{e}\\
⑤\ \frac{e+1}{2e} ⑥\ \frac{e^2+1}{2e} ⑦\ \frac{e^4+1}{2e} ⑧\ \frac{e^6+1}{2e} ⑨\ \frac{e^8+1}{2e}
\end{eqnarray}
2021明治大学全統過去問
単元:
#関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} (1)\ k \gt 0として、次の定積分を考える。\hspace{130pt}\\
F(k)=\int_0^1\frac{e^{kx}-1}{e^{kx}+1}\ dx\\
このとき、F(2)=\log(\boxed{\ \ ア\ \ })となる。また、\lim_{k \to \infty}F(k)=\boxed{\ \ イ\ \ }\ である。\\
\\
\boxed{\ \ ア\ \ }\ の解答群\\
⓪\ \frac{e+1}{e} ①\ \frac{e^2+1}{e} ②\ \frac{e^4+1}{e} ③\ \frac{e^6+1}{e} ④\ \frac{e^8+1}{e}\\
⑤\ \frac{e+1}{2e} ⑥\ \frac{e^2+1}{2e} ⑦\ \frac{e^4+1}{2e} ⑧\ \frac{e^6+1}{2e} ⑨\ \frac{e^8+1}{2e}
\end{eqnarray}
2021明治大学全統過去問
\begin{eqnarray}
{\Large\boxed{3}} (1)\ k \gt 0として、次の定積分を考える。\hspace{130pt}\\
F(k)=\int_0^1\frac{e^{kx}-1}{e^{kx}+1}\ dx\\
このとき、F(2)=\log(\boxed{\ \ ア\ \ })となる。また、\lim_{k \to \infty}F(k)=\boxed{\ \ イ\ \ }\ である。\\
\\
\boxed{\ \ ア\ \ }\ の解答群\\
⓪\ \frac{e+1}{e} ①\ \frac{e^2+1}{e} ②\ \frac{e^4+1}{e} ③\ \frac{e^6+1}{e} ④\ \frac{e^8+1}{e}\\
⑤\ \frac{e+1}{2e} ⑥\ \frac{e^2+1}{2e} ⑦\ \frac{e^4+1}{2e} ⑧\ \frac{e^6+1}{2e} ⑨\ \frac{e^8+1}{2e}
\end{eqnarray}
2021明治大学全統過去問
投稿日:2021.09.23