2023昭和大(医)漸化式の基本問題 - 質問解決D.B.(データベース)

2023昭和大(医)漸化式の基本問題

問題文全文(内容文):
$a_1=4$
$\displaystyle \sum_{k=1}^{n+1} a_k=4,a_n+8$
一般項$a_n$を求めよ.

昭和大(医)過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#昭和大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=4$
$\displaystyle \sum_{k=1}^{n+1} a_k=4,a_n+8$
一般項$a_n$を求めよ.

昭和大(医)過去問
投稿日:2023.03.07

<関連動画>

岩手大 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n=1,2,3・・・・$
$a_1=31$
$a_{n+1}=\dfrac{(n+3)a_n-28}{n+2}$
一般項を求めよ.

2020岩手大過去問
この動画を見る 

【高校数学】 数B-56 数列とは?

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$1,3,5,7,・・・$のように,数を一列に並べたものを数列といい,
数列を作っている各数を①という.
その中でも最初のものを②,最後のものを③という.

問題1
一般項$\{ an \}$が次の式で表される数列の$\large{a_1,a_4,a_7}$を求めよう.

④$2n-1$

⑤$-3n+2$

⑥$(-1)^n$

問題2
次の数列の一般項$\large{a_n}$を推測しよう.

⑦$3,6,9,12,・・・$

⑧$\dfrac{3}{2},\dfrac{9}{4},\dfrac{27}{6},\dfrac{81}{8},・・・$

⑨$-1,2,-3,4,・・・$
この動画を見る 

04兵庫県教員採用試験(数学:2番 数列と帰納法)

アイキャッチ画像
単元: #数列#漸化式#数学的帰納法#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$a_1=\frac{1}{2}$ , $a_{n+1}=\frac{1}{2-a_n}$
一般項$a_n$を求めよ
この動画を見る 

福田の一夜漬け数学〜数列・階差数列と部分分数分解〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の数列の一般項を求めよ。
$2,4,7,13,24,42,69,107,158,\cdots$

次の和を求めよ。
(1)$\displaystyle \sum_{k=1}^n\frac{1}{4k^2-1}$
(2)$\displaystyle \sum_{k=1}^n\frac{1}{k^2+2k}$
(3)$\displaystyle \sum_{k=1}^n\frac{1}{k(k+1)(k+2)}$
この動画を見る 

福田の数学〜神戸大学2024年文系第1問〜3次関数で定義された数列

アイキャッチ画像
単元: #数列#漸化式#神戸大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 各項が正である数列$\left\{a_n\right\}$を次のように定める。$a_1$は関数
$y$=$\displaystyle\frac{1}{3}x^3$-10$x$ ($x$≧0)
が最小値をとるときの$x$の値とする。$a_{n+1}$は関数
$y$=$\displaystyle\frac{1}{3}x^3$-100$a_nx$ ($x$≧0)
が最小値をとるときの$x$の値とする。数列$\left\{b_n\right\}$を$b_n$=$\log_{10}a_n$ で定める。以下の問いに答えよ。
(1)$a_1$と$b_1$を求めよ。 (2)$a_{n+1}$を$a_n$を用いて表せ。
(3)$b_{n+1}$を$b_n$を用いて表せ。
(4)数列$\left\{b_n\right\}$の一般項を求めよ。
(5)$\displaystyle\frac{a_1a_2a_3}{100}$ の値を求めよ。
この動画を見る 
PAGE TOP