2乗の数を5で割った余りの個数(整数問題) - 質問解決D.B.(データベース)

2乗の数を5で割った余りの個数(整数問題)

問題文全文(内容文):
$n$を30以下の正の整数とする。
$n^2$を$5$で割ったときの余りが1となるのはいくつあるか求めよ。
$\begin{array}{c|c|c|c|c|c|c|c|c|c|c|}
\hline
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
n^2 & & & & & & & & & & \\
\hline
余り & & & & & & & & & & \\
\hline
\end{array}$

出典:2003年筑波大学附属高等学校
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$n$を30以下の正の整数とする。
$n^2$を$5$で割ったときの余りが1となるのはいくつあるか求めよ。
$\begin{array}{c|c|c|c|c|c|c|c|c|c|c|}
\hline
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
n^2 & & & & & & & & & & \\
\hline
余り & & & & & & & & & & \\
\hline
\end{array}$

出典:2003年筑波大学附属高等学校
投稿日:2020.01.07

<関連動画>

ただの因数分解と整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#場合の数と確率#式の計算(整式・展開・因数分解)#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①因数分解せよ.
$(x-2)(x-1)(x+1)(x+2)+2$

②$n^5-5n^3+5n+7$が120の倍数となる自然数nを一つ求めよ.
この動画を見る 

大阪大 整数(素数)問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'04大阪大学過去問題
p,q素数(p>2q)
$a_n=P^n-4(-q)^n$  n自然数
(1)$a_1$と$a_2$が1より大きい公約数mをもつならばm=3であることを示せ
(2)$a_n$が全て3の倍数であるようなp,qのうち積pqが最小となるものを求めよ。
この動画を見る 

【その場で「考える力」を身に付ける!】整数:大阪星光学院高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2数$a,b$の最大公約数を$[a\odot b]$と表すと・・・
$[1\odot 2]+[2\odot 3]+[3\odot 4]+・・・+[100\odot 101]=\Box$であり,
$[1\odot 3]+[2\odot 4]+[3\dot 5]+・・・+[99\odot 101]+[100\odot 102]=\box$である.

大阪星光高校過去問
この動画を見る 

岩手大 フェルマーの最終定理「風」整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^4+b^4+2=c^4$を満たす整数$(a,b,c)$は存在しないことを示せ.

2021岩手大過去問
この動画を見る 

三重大医)整数 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#三重大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
三重大学
a,b,c,d素数
$f(x)=ax^3+bx^2+cx+d$
f(-1),f(0),f(1)はいずれも3で割り切れないとき、f(x)=0は整数の解をもたないことを示せ。
この動画を見る 
PAGE TOP