【数Ⅱ】【微分法と積分法】面積和の最小値 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】面積和の最小値 ※問題文は概要欄

問題文全文(内容文):
0<t<1とする。放物線y=x²と直線lが点T(t,t²)で接している。このとき、放物線と直線l、x軸、直線x=1で囲まれた2つの図形の面積の和をSとする。Sの最小値を求めよ。
チャプター:

0:00 オープニング
0:05 問題文、解説
4:26 エンディング

単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0<t<1とする。放物線y=x²と直線lが点T(t,t²)で接している。このとき、放物線と直線l、x軸、直線x=1で囲まれた2つの図形の面積の和をSとする。Sの最小値を求めよ。
投稿日:2025.04.02

<関連動画>

福田の数学〜中央大学2023年経済学部第3問〜直方体の体積の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ Oを原点とする座標空間内に点A($a$, 0, 0), B(0, $b$, 0)と線分AB上を動く点Pがある。ただし、$a$, $b$は正の定数とする。Pを通り$x$軸に垂直な直線と$x$軸との交点をQ、Pを通り$y$軸に垂直な直線と$y$軸との交点をRとする。長方形OQPRを底面とし、高さがOQの長さに等しい直方体の体積をVとおく。Pの座標をP($x$, $y$, 0)とするとき、以下の問いに答えよ。
(1)$y$を$x$を用いて表せ。
(2)Vを$x$を用いて表せ。
(3)Pが線分AB上を動くとき、Vの最大値を求めよ。また、そのときのPの座標を求めよ。
この動画を見る 

【短時間でポイントチェック!!】定積分 面積② 直線と曲線で囲まれた面積〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$y=x^2-x-4,y=x-1$で囲まれた部分の面積
この動画を見る 

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 

17神奈川県教員採用試験(数学:8番 積分【面積の最小値】)

アイキャッチ画像
単元: #数Ⅱ#2次関数#複素数と方程式#2次関数とグラフ#微分法と積分法#解と判別式・解と係数の関係#面積、体積#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
8⃣$y=x^2$と(-1,3)を通る直線lで囲まれた面積Sの最小値を求めよ。
この動画を見る 

福田の数学〜筑波大学2023年理系第2問〜放物線で囲まれた図形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $\alpha$, $\beta$を実数とし、$\alpha$>1とする。曲線$C_1$:$y$=|$x^2$-1|と曲線$C_2$:$y$=-$(x-\alpha)^2$+$\beta$が、点($\alpha$, $\beta$)と点(p, q)の2点で交わるとする。また、$C_1$と$C_2$で囲まれた図形の面積を$S_1$とし、$x$軸、直線$x$=$\alpha$、および$C_1$の$x$≧1を満たす部分で囲まれた図形の面積を$S_2$とする。
(1)pを$\alpha$を用いて表し、0<p<1であることを示せ。
(2)$S_1$を$\alpha$を用いて表せ。
(3)$S_1$>$S_2$であることを示せ。

2023筑波大学理系過去問
この動画を見る 
PAGE TOP