ルートの計算 - 質問解決D.B.(データベース)

ルートの計算

問題文全文(内容文):
$\sqrt 4 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 8 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 9 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 18 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 16 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 32 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 50 =$
$\sqrt ▢ = \sqrt{▢} \times \sqrt{▢} = $
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt 4 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 8 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 9 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 18 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 16 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 32 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 50 =$
$\sqrt ▢ = \sqrt{▢} \times \sqrt{▢} = $
投稿日:2022.05.24

<関連動画>

【#10】【因数分解100問】基礎から応用まで!(91)〜(95)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(91)$(3x-8)(16x+9)$
(92)$(25x-16)(4x+5)$
(93)$3(a+b)(b+c)(c+a)$
(94)$24xyz$
(95)$(x+y+2)(x-y-2)(x+y-2)(x-y+2)$
この動画を見る 

2024年共通テスト速報〜数学ⅠA第1問の(1)〜福田の入試解説

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
$n \lt 2\sqrt{ 13 } \lt n+1$を満たす整数nはアである。
実数a,bを$a=2\sqrt{ 13 }$-ア,b=$\frac{1}{a}$で定める。このとき
$b=\frac{イ+2\sqrt{13}}{ウ}$である。また、$a^2-9b^2=エオカ\sqrt{13}$である。
①(7$\lt 2\sqrt{13} \lt 8$)から$\frac{7}{2} \lt \sqrt{13} \lt 4$が成り立つ。
①と④($b=\frac{7+2\sqrt{13}}{3}$)から$\frac{m}{ウ} \lt b \lt \frac{m+1}{ウ}$を満たすmはキク
よって③($b=\frac{1}{a}$)から$\frac{a}{15} \lt a \lt \frac{ウ}{14}$・・・⑥が成り立つ。
$\sqrt{13}$の整数部分はケであり、②($a=2\sqrt{13}-7$)と⑥から$\sqrt{13}$の小数点第1位の数字はコ、小数点第2位の数字はサである。

2024共通テスト過去問
この動画を見る 

円と接線と角度 2通りで解説!!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x = ?$
*図は動画内参照
この動画を見る 

【数Ⅰ】中高一貫校問題集3(数式・関数編)34:数と式:因数分解:次の式を因数分解せよ。6x²+17ax+12a²

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を因数分解せよ。
6x²+17ax+12a²
この動画を見る 

【次数が高くても焦るな】対称式 入試問題【2017年昭和大学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a+b=1,a^2+b^2=3$のとき、$a^7+b^7$の値を求めよ。

2017昭和大過去問
この動画を見る 
PAGE TOP