333‥‥33が2021の倍数 - 質問解決D.B.(データベース)

333‥‥33が2021の倍数

問題文全文(内容文):
$333・・・・・・33$のように,すべての位の数が3である数の中には必ず$2021$の倍数があることを示せ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$333・・・・・・33$のように,すべての位の数が3である数の中には必ず$2021$の倍数があることを示せ.
投稿日:2020.10.09

<関連動画>

整数問題 基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a+b+c$が$6$の倍数ならば$a^3+b^3+c^3$も$6$の倍数であることを示せ.
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^a+4^b=5^c(a,b,c \epsilon \mathbb{ N })$
$(a,b,c)$をすべて求めよ
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,bは自然数
ab+a+b=3598
$(a-b)^2=?$
この動画を見る 

パスラボ宇佐見さん登場 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$7^n=k^2-99$
整数$k,n$を全て求めよ.
この動画を見る 

大阪大 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2008大阪大学過去問題
αを$x^2-2x-1=0$の解とする。
$(a+5α)(b+5cα)=1$を満たす整数の組(a,b,c)をすべて求めよ。
ただし必要なら$\sqrt2$が無理数であることは証明せずに用いてよい。
この動画を見る 
PAGE TOP