数検準1級1次過去問(6番 楕円) - 質問解決D.B.(データベース)

数検準1級1次過去問(6番 楕円)

問題文全文(内容文):
6⃣
楕円$x^2-4x+2y^2+12y+14=0$
の焦点の座標を求めよ。
単元: #数学検定・数学甲子園・数学オリンピック等#平面上の曲線#2次曲線#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
6⃣
楕円$x^2-4x+2y^2+12y+14=0$
の焦点の座標を求めよ。
投稿日:2020.11.30

<関連動画>

【高校数学】数Ⅲ-39 2次曲線と離心率

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①点$F(1,0)$と直線$x=4$からの距離の比が
$1:2$であるような点$P$の軌跡を求めよ.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題004〜東北大学2015年理系数学第1問

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
xy平面において、次の式が表す曲線をCとする。
$x^2+4y^2=1,x \gt 0, y \gt 0$
PをC上の点とする。PでCに接する直線をlとし、Pを通りlと垂直な直線を
mとして、x軸とy軸とmで囲まれてできる三角形の面積をSとする。PがC
上の点全体をうごくとき、Sの最大値とその時のPの座標を求めよ。

2015東北大学理系過去問
この動画を見る 

【数C】【平面上の曲線】辺が座標軸に平行な長方形が、楕円x²/16+y²/12=1に内接している。この長方形の周の長さが20であるとき、長方形の2辺の長さを求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説
指導講師: 理数個別チャンネル
問題文全文(内容文):
辺が座標軸に平行な長方形が、
楕円 $\displaystyle \frac{x^2}{16}+\frac{y^2}{12}=1$ に内接している。
この長方形の周の長さが $20$ であるとき、
長方形の $2$ 辺の長さを求めよ。
この動画を見る 

【数Ⅲ】2次曲線:双曲線関数について(関数として知っておこう!知識編)

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
あまり学校で聞かない、双曲線関数の性質を教えます!(数学Ⅲにおける重要関数!)
この動画を見る 

【高校数学】数Ⅲ-31 双曲線③

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
原点を中心とし,$x$軸または$y$軸を主軸とする双曲線のうち,
次の条件を満たすものの方程式を求めよ.

①2点$(6,0),(-6,0)$からの距離の差が8

②2直線$y=2x,y=-2x$を漸近線とし,点$(0,2)$を通る

③2点$(\sqrt2,2),(-\sqrt5,-4)$を通る
この動画を見る 
PAGE TOP