数検準1級1次過去問(6番 楕円) - 質問解決D.B.(データベース)

数検準1級1次過去問(6番 楕円)

問題文全文(内容文):
6⃣
楕円$x^2-4x+2y^2+12y+14=0$
の焦点の座標を求めよ。
単元: #数学検定・数学甲子園・数学オリンピック等#平面上の曲線#2次曲線#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
6⃣
楕円$x^2-4x+2y^2+12y+14=0$
の焦点の座標を求めよ。
投稿日:2020.11.30

<関連動画>

15岡山県教員採用試験(数学:6番 サイクロイドの長さ)

アイキャッチ画像
単元: #平面上の曲線#2次曲線#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
曲線$c$ $\begin{eqnarray}
\left\{
\begin{array}{l}
x=r(\theta-\sin\theta) \\
y-r(1-\cos\theta)
\end{array}
\right.
\end{eqnarray}$
の長さ$\ell$を求めよ.

$r\gt 0,0\leqq \theta 2\pi$とする.
この動画を見る 

福田のおもしろ数学225〜楕円と直線の交点を使った線分の長さの積の最小値

アイキャッチ画像
単元: #数A#図形の性質#平面上の曲線#方べきの定理と2つの円の関係#2次曲線#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
点 $\mathrm{P}(2,1)$ を通る直線が楕円 $\displaystyle \frac{x^2}{2}+\frac{y^2}{3}=1$ と異なる2点 $\mathrm{Q}, \, \mathrm{R}$ で交わっている。$\mathrm{PQ} \cdot \mathrm{PR}$ の最小値を求めよ。
この動画を見る 

【数C】【平面上の曲線】2点 A(- 2, 0) , B(2, 0) と楕円 x²/36 + y²/9 = 1上の点Qでできる△AQBの重心Pの軌跡を求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
$2$ 点 $\mathrm{A}(-2,\ 0),\ \mathrm{B}(2,\ 0)$と、

楕円 $\displaystyle \frac{x^2}{36}+\frac{y^2}{9}=1$ 上の点$\mathrm{Q}$でできる

$\triangle \mathrm{AQB}$ の重心$\mathrm{P}$の軌跡を求めよ。
この動画を見る 

【数Ⅲ】2次曲線:点Pが円x²+y²=4上を動く。yだけを1/2した点Qの軌跡を求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Pが円$x²+y²=4$上を動く。yだけを$\dfrac{1}{2}$した点Qの軌跡を求めよ。
この動画を見る 

【高校数学】数Ⅲ-38 2次曲線と直線④

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①点$(4,1)$から楕円$x^2+2y^2=6$に引いた接線の方程式を求めよ.

②楕円$x^2+4y^2=4$と直線$y=x+k$が,
異なる2点$P,Q$で交わるとき,線分$PQ$の中点$R$の軌跡を求めよ.
この動画を見る 
PAGE TOP