京都大学 サイコロ確率 - 質問解決D.B.(データベース)

京都大学 サイコロ確率

問題文全文(内容文):
サイコロを$n$回振って$(n \geqq 2)$出た目の$($最大値$)-($最小値$)=x$とする
(1)
$x=1$となる確率

(2)
$x=5$となる確率

出典:2017年京都大学 過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回振って$(n \geqq 2)$出た目の$($最大値$)-($最小値$)=x$とする
(1)
$x=1$となる確率

(2)
$x=5$となる確率

出典:2017年京都大学 過去問
投稿日:2019.05.26

<関連動画>

確率 中央大(商)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2020中央大学過去問題
$1,2,2^2,2^3,\cdots,2^{n-1}$
の数字が1つずつ書かれたn枚のカードから1枚をとり出して
その数をX,それを戻してもう1枚とり出してその数をYとする
①X=2Yとなる確率
②XがYの倍数となる確率
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第2問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large{\boxed{2}}}$与えられた図形の頂点から無作為に異なる3点を選んで三角形を作る試行を考える。ただし、
この試行におけるすべての根元事象は同様に確からしいとする。
(1)正n角形における前事象を$U_n$とし、その中で面積が最小の三角形ができる
事象を$A_n$とする。ただし、$n$は$n \geqq 6$を満たす自然数とする。
$(\textrm{i})$事象$U_6$において、事象$A_6$の確率は$\boxed{\ \ ス\ \ }$である。
$(\textrm{ii})$事象$U_n$において、事象$A_n$の確率をnの式で表すと$\boxed{\ \ セ\ \ }$であり、
この確率が$\frac{1}{1070}$以下になる最小の$n$の値は$\boxed{\ \ ソ\ \ }$である。
$(\textrm{iii})$事象$U_n \cap \bar{ A_n }$において、面積が最小となる三角形ができる確率をnの式で
表すと$\boxed{\ \ タ\ \ }$である。
(2)1辺の長さが$\sqrt2$である立方体における全事象をVとすると、事象$V$に含まれ
るすべての三角形の面積の平均値は$\boxed{\ \ チ\ \ }$である。

2021慶應義塾大学薬学部過去問
この動画を見る 

【数A】中高一貫校用問題集(論理・確率編)場合の数と確率:反復試行の確率(ひっかけあり!!):先に3勝する確率

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
AとBが試合を行い、先に3勝した方を優勝者とする。各試合でAが勝つ確率は2/3で引き分けはないとする。このとき、Aが優勝する確率を求めよ。
この動画を見る 

【数A】確率:感覚でわかる最短経路

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
<最短経路の問題>AからPを通ってBに着く確率は?
この動画を見る 

数学「大学入試良問集」【5−1 重複組み合わせ】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1つのさいころを続けて5回投げて、出た目を順に$x_1,x_2,x_3,x_4,x_5$とする。
このとき、$x_1 \leqq x_2 \leqq x_3$と$x_3 \geqq x_4 \geqq x_5$,両不等式が同時に成り立つ確率を求めよ。
この動画を見る 
PAGE TOP