九州大学 三倍角 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

九州大学 三倍角 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
九州大学過去問題
(1)$\sin10^{\circ}$は3次方程式$8x^3-6x+1=0$の解であることを示せ。
(2)他の2解を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
九州大学過去問題
(1)$\sin10^{\circ}$は3次方程式$8x^3-6x+1=0$の解であることを示せ。
(2)他の2解を求めよ。
投稿日:2018.05.11

<関連動画>

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。三角関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[1](1)次の問題Aについて考えよう。
問題A 関数$y=\sin\theta+\sqrt3\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。

$\sin\frac{\pi}{\boxed{ア}}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{ア}}=\frac{1}{2}$ であるから、三角関数の合成により
$y=\boxed{イ}\sin(\theta+\frac{\pi}{\boxed{ア}})$
と変形できる。よって、yは$\theta=\frac{\pi}{\boxed{ウ}}$で最大値$\boxed{エ}$をとる。

(2)pを定数とし、次の問題Bについて考えよう。
問題B 関数$y=\sin\theta+p\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$(\textrm{i})p=0$のとき、yは$\theta=\frac{\pi}{\boxed{オ}}$で最大値$\boxed{カ}$をとる。

$(\textrm{ii})p \gt 0$のときは、加法定理$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$を用いると
$y=\sin\theta+p\cos\theta=\sqrt{\boxed{キ}}\cos(\theta-\alpha)$

と表すことができる。ただし$\alphaは\sin\alpha=\frac{\boxed{ク}}{\sqrt{\boxed{キ}}}, \cos\alpha=\frac{\boxed{ケ}}{\sqrt{\boxed{キ}}}, 0 \lt \alpha \lt \frac{\pi}{2}$

を満たすものとする。このとき、yは$\theta=\boxed{コ}$で最大値$\sqrt{\boxed{サ}}$をとる。

$(\textrm{iii})p \lt 0$のとき、$y$は$\theta=\boxed{シ}$で最大値$\sqrt{\boxed{ス}}$をとる。

$\boxed{キ}~\boxed{ケ}、\boxed{サ}、\boxed{ス}$の解答群
⓪-1   ①1   ②-p   ③p   \\
④1-p   ⑤1+p   ⑥-p^2   ⑦p^2   ⑧1-p^2   \\
⑨1+p^2   ⓐ(1-p)^2   ⓑ(1+p^2)   \\

$\boxed{コ}、\boxed{シ}$の解答群
⓪$0$    ①$\alpha$    ②$\frac{\pi}{2}$

2021共通テスト数学過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第2問〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}\ 0 \leqq \theta \leqq \pi $のとき、関数$y=\sin3\theta-3\cos(\theta-\frac{\pi}{6})$の最大値と最小値を求めたい。
(1)$x=\cos(\theta-\frac{\pi}{6})$とおくと、もとの関数は

$y=\boxed{\ \ アイ\ \ }\ x^3+\boxed{\ \ ウエ\ \ }\ x^2+\boxed{\ \ オカ\ \ }\ x+\boxed{\ \ キク\ \ }$
と書き直すことができる。
(2)このことから、もとの関数の最大値は$\theta=\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}\ \pi$のときに
$\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }}$
であり、最小値は$\theta=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\ \pi$のときに
$\boxed{\ \ ナニ\ \ }\sqrt{\boxed{\ \ ヌネ\ \ }}$であることがわかる。

2022慶應義塾大学環境情報学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題101〜慶應義塾大学2020年度環境情報学部第1問(1)〜不定方程式の解

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#平面上の曲線#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#ユークリッド互除法と不定方程式・N進法#三角関数#加法定理とその応用#2次曲線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)正の実数xとyが9$x^2$+16$y^2$=144 を満たしているとき、xyの最大値は$\boxed{\ \ アイ\ \ }$である。

2020慶應義塾大学環境情報学部過去問
この動画を見る 

【高校数学】 数Ⅱ-102 三角関数を含む方程式・不等式④

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq \theta \lt 2π$のとき、次の不等式を解こう。

①$\sin (\theta +\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{\sqrt{ 2 }}$

②$\cos(\theta-\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{2}$

③$\tan (\theta+\displaystyle \frac{π}{4}) \gt \sqrt{ 3 }$
この動画を見る 

福田の数学〜中央大学2022年経済学部第1問(3)〜三角不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)$0\leqq x\leqq \pi$のとき、次の不等式を解け。
$\sin^2x-\cos^2x+sinx \gt 0$


2022中央大学経済学部過去問
この動画を見る 
PAGE TOP