福田のおもしろ数学378〜ある漸化式で定められる数列の最初の2025項が正で2026番目が初めて負になることが可能かどうかの検証 - 質問解決D.B.(データベース)

福田のおもしろ数学378〜ある漸化式で定められる数列の最初の2025項が正で2026番目が初めて負になることが可能かどうかの検証

問題文全文(内容文):
$a_{0}>0, c>0, a_{n+1}=\frac{a_{n}+c}{1-a_{n}c}$で定まる数列${a_{n}}$に対し、$a_{0}, a_{1}, \cdots ,a_{2024}$がすべて正であり、$a_{2025}<0$となることは可能か。
単元: #数Ⅱ#三角関数#加法定理とその応用#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_{0}>0, c>0, a_{n+1}=\frac{a_{n}+c}{1-a_{n}c}$で定まる数列${a_{n}}$に対し、$a_{0}, a_{1}, \cdots ,a_{2024}$がすべて正であり、$a_{2025}<0$となることは可能か。
投稿日:2025.01.14

<関連動画>

18東京都教員採用試験(数学:場合の数、数列)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(2)
平面上の10コの円は、任意の2コの円も異なる2点で交わり、3コの円は1点で交わらないとき交点の総数を求めよ。
この動画を見る 

東北大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=3$ $a_{n+1} \gt a_{n}$
$n$自然数 一般項を求めよ
$a^2_{n}-2a_{n}a_{n+1}+a_{n+1}^2=3(a_{n}+a_{n+1})$

出典:2015年東北大学 過去問
この動画を見る 

福田のおもしろ数学383〜関数方程式

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$0$以上の整数の集合を$\mathbb{N}$$_0$とする。
$f:$$\mathbb{N}$$_0$→$\mathbb{N}$$_0$が任意の$x≧y\in $$\mathbb{N}$$_0$で$f(x^2)-f(y^2)=f(x+y)f(x-y)$を満たす。
$f(x)$を求めよ。
この動画を見る 

信州大 漸化式 ちょいと一工夫 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93信州大学過去問題
$a_1=\frac{1}{2}$ $a_{n+1}=a_n(2-a_n)$
一般項を求めよ。n自然数
この動画を見る 

福田の数学〜中央大学2021年理工学部第2問〜3項間の漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}$コインを繰り返し,連続した3回が順に,表→裏→表,あるいは,裏→表→裏,というパターンが出たときにコイン投げを終了する.$n\geqq 3$に対し,コインをちょうど$n$回投げて終了する確率を$p_n$とする.
以下の手順により$p_n$を求める.コインを$n$回投げて,「まだ終了していないが$n+1$回目に表が出たら終了する」または「まだ終了してないが$n+1$回目に裏が出たら終了する.」という状態にある確率を$r_n$とする.またコインを$n$回投げて「まだ終了しておらず,$n+1$回目に表が出ても裏が出ても終了しない」という状態にある確率を$s_n$とする.
このとき,$r_3=\dfrac{1}{4},s_3=\boxed{ク},r_4=\dfrac{1}{4},s_4=\boxed{ケ}$である.
ここで,$r_{n+4}$と$r_{n},s_n$を用いて表すと,それぞれ$r_{n+1}=\boxed{コ}$,$s_{n+1}=\boxed{サ}$となる.
この動画を見る 
PAGE TOP