【数C】平面ベクトル:2020年高2第2回駿台全国模試第7問解説してみた! - 質問解決D.B.(データベース)

【数C】平面ベクトル:2020年高2第2回駿台全国模試第7問解説してみた!

問題文全文(内容文):
点Oを中心とする半径1の円に内接する四角形ABCDについて、次の条件(I)(II)を考える。
(I)AO=-17/2*AB+5AC (II)OA・OC=OA・OD また、θ=∠AOCとする。次の問いに答えよう。
(1)内積OA・OCをθを用いて表そう。
(2)(I)が成り立つとき、(i)OBをOAとOCを用いて表そう。(ii)cosθの値を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:20 問題解説(1):内積の公式
1:14 問題解説(2):始点の変更
3:08 問題解説(3):面積公式、計算の工夫
6:59 名言

単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#駿台模試#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Oを中心とする半径1の円に内接する四角形ABCDについて、次の条件(I)(II)を考える。
(I)AO=-17/2*AB+5AC (II)OA・OC=OA・OD また、θ=∠AOCとする。次の問いに答えよう。
(1)内積OA・OCをθを用いて表そう。
(2)(I)が成り立つとき、(i)OBをOAとOCを用いて表そう。(ii)cosθの値を求めよう。
投稿日:2021.02.26

<関連動画>

福田の数学〜千葉大学2023年第5問〜垂線の足の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
5 点Oを原点とする座標平面において、点Aと点BがOAOA=5, OBOB=2, OAOB=3を満たすとする。
(1)OB=kOA となるような実数kは存在しないことを示せ。
(2)点Bから直線OAに下ろした垂線とOAとの交点をHとする。HBOAOBを用いて表せ。
(3)実数tに対し、直線OA上の点PをOP=tOAとなるようにとる。同様に直線OB上の点QをOQ=(1-t)OBとなるようにとる。点Pを通り直線OAと直交する直線をl1とし、点Qを通り直線OBと直交する直線をl2とする。
l1l2の交点をRとするとき、OROA,OB,tを用いて表せ。
(4)3点O,A,Bを通る円の中心をCとするとき、OCOAOBを用いて表せ。
この動画を見る 

【数検2級】高校数学:数学検定2級2次:問題4

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学検定#数学検定2級#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
AB=5,BC=6,CA=4である△ABCの内接円の中心をIとします。また、直線AIと辺BCの交点をDとします。
このとき、ABb ,ACcとして、次の問いに答えなさい。
(1) ADb ,cを用いて表しなさい。
(2) AIb ,cを用いて表しなさい。
この動画を見る 

【数B】ベクトル:2020年第2回高2K塾記述模試の第7問を解いてみた!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
この動画を見る 

【わかりやすく】ベクトルの成分の成分計算(数学B/平面ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
a=(1,2),b=(2,3)のとき、次のベクトルを成分で表し、その大きさを求めよ。
(1)2a
(2)3b
(3)a+b
(4)3ba
この動画を見る 

福田の数学〜北海道大学2024年理系第4問〜三角形の内心の位置ベクトル

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
4 三角形OABが、|OA|=3, |AB|=5, OAOB=10 を満たしているとする。
三角形OABの内接円の中心をIとし、この内接円と辺OAの接点をHとする。
(1)辺OBの長さを求めよ。
(2)OIOAOBを用いて表せ。
(3)HIOAOBを用いて表せ。
この動画を見る 
PAGE TOP preload imagepreload image