福田のおもしろ数学316〜x^n+x^{-n}が整数である証明と倍数 - 質問解決D.B.(データベース)

福田のおもしろ数学316〜x^n+x^{-n}が整数である証明と倍数

問題文全文(内容文):
2より大きい整数$t$に対して$t=x+x^{-1}$を満たす実数$x$を考える。$t_n = x+x^{-n}$とするとき$t_n$は常に整数であることを示せ。また、$t_n$が$t$の倍数となるような正の整数$n$をすべて求めよ。
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
2より大きい整数$t$に対して$t=x+x^{-1}$を満たす実数$x$を考える。$t_n = x+x^{-n}$とするとき$t_n$は常に整数であることを示せ。また、$t_n$が$t$の倍数となるような正の整数$n$をすべて求めよ。
投稿日:2024.11.13

<関連動画>

どってことない問題

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$5^{2021}!$の末尾に$0$は何個並ぶか.
この動画を見る 

福田の数学〜上智大学2024理工学部第3問〜円の内部を反射しながら進む点の通過範囲

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
点$O$を中心とし半径が$1$の円形のビリヤード台がある。台の縁の点$P_1$に大きさが無視できる球$Q$を置き、半径$P_1O$とのなす角が$\frac{\pi}{8}$の方向へ球$Q$を打ち出す。
球$Q$は、ビリヤード台の縁に当たると、図のように入射角と反射角が等しくなるように反射し、一度打ち出されたら止まらないものとする。
$i=1,2,3,\cdots$に対し、点$P_i$の次に球$Q$が縁に当たる点を$P_{i+1}$とし、$\overrightarrow{OP_i}=\overrightarrow{p_i}$とする。
(1)$\overrightarrow{p_3}=\fbox{あ}\overrightarrow{p_1}+\fbox{い}\overrightarrow{p_2},\overrightarrow{p_4}=\fbox{う}\overrightarrow{p_1}+\fbox{え}\overrightarrow{p_2}$である。
(2)$P_i=P_1となるiのうち、 i\geqq 2で最小のものは\fbox{ソ}である。$
(3)$線分P_1P_2とP_3P_4 との交点をA、線分P_1P_2とP_6P_7との交点をBとすると$
$\overrightarrow{OA}=\fbox{お}\overrightarrow{p_1}+\fbox{か}\overrightarrow{p_2},\overrightarrow{OB}=\fbox{き}\overrightarrow{p_1}+\fbox{く}\overrightarrow{p_2}$である。
(4)球$Q$が点$P_1$から打ち出されてから初めて再び点$P_1$に到達するまでに、中心$O$と球$Q$とを結ぶ線分$OQ$がちょうど2回通過する領域の面積は$\fbox{タ}+\fbox{チ}\sqrt{2}$である。
この動画を見る 

漸化式 山梨大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023年 山梨大学 過去問

$a_1=6$
$a_{n+1}=\frac{n+3}{n+1}a_n+1$
$b_n=\frac{a_n}{(n+1)(n+2)}$
この動画を見る 

これ解ける?

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#数列#数列とその和(等差・等比・階差・Σ)#規則性(周期算・方陣算・数列・日暦算・N進法)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
これ解ける?
※問題文は動画内参照
この動画を見る 

福田の数学〜北海道大学2024年文系第2問〜漸化式を解く

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 次の条件によって定められる数列$\left\{a_n\right\}$について考える。
$a_1$=3, $a_{n+1}$=$3a_n$-$\displaystyle\frac{3^{n+1}}{n(n+1)}$
(1)$b_n$=$\frac{a_n}{3^n}$ とおくとき、$b_{n+1}$を$b_n$と$n$の式で表せ。
(2)数列$\left\{a_n\right\}$ の一般項を求めよ。
この動画を見る 
PAGE TOP