福田のおもしろ数学343〜3次方程式の解の存在範囲 - 質問解決D.B.(データベース)

福田のおもしろ数学343〜3次方程式の解の存在範囲

問題文全文(内容文):
$1 \geq a \geq b \geq c >0$ のとき $x^3+a x^2+bx+c=0$ の1つの解を $\alpha$ とする。
$|a| \leq 1$ を証明してください。
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$1 \geq a \geq b \geq c >0$ のとき $x^3+a x^2+bx+c=0$ の1つの解を $\alpha$ とする。
$|a| \leq 1$ を証明してください。
投稿日:2024.12.10

<関連動画>

立命館(文系)複素数の計算

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#大学入試過去問(英語)#立命館大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^6=1$の4つの虚数解のうちの1つを$\alpha$とする.
$(1-\alpha)(1-\alpha^3)(1-\alpha^5)$の値は$\Box$か$\Box$か.

立命館大(文系)過去問
この動画を見る 

学習院大 三次方程式と複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'04学習院大学過去問題
a実数
$f(x)=4x^3-4ax^2+(a^2+3)x+a^2+4a+7$
(1)任意のaについてf(m)=0が成り立つ実数m
(2)f(x)=0の3つの解を複素数平面上に図示したとき、それらが正三角形になるようなaの値
この動画を見る 

【数学】2022年度 第2回 K塾記述高2模試 全問解説(ベクトルはおまけ)、※修正箇所:問1(1)(概要欄へ)

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#複素数と方程式#図形と計量#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#確率#図形と方程式#三角関数#複素数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
2022年度第2回全統記述高2模試全問解説動画です!
この動画を見る 

甲南大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#甲南大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\displaystyle \frac{\sqrt{ 3 }+i}{\sqrt{ 3 }-i}$

$Z+Z^2+Z^3+…+Z^{100}$

出典:2002年甲南大学 過去問
この動画を見る 

久留米大(医)4次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#久留米大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x=1+\sqrt{3}c$が解である$x^4+ax^3+ax^2+(6-a)x+b=0$の
実数$a,b$を求めよ.

久留米大(医)過去問
この動画を見る 
PAGE TOP