福田のおもしろ数学343〜3次方程式の解の存在範囲 - 質問解決D.B.(データベース)

福田のおもしろ数学343〜3次方程式の解の存在範囲

問題文全文(内容文):
$1 \geq a \geq b \geq c >0$ のとき $x^3+a x^2+bx+c=0$ の1つの解を $\alpha$ とする。
$|a| \leq 1$ を証明してください。
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$1 \geq a \geq b \geq c >0$ のとき $x^3+a x^2+bx+c=0$ の1つの解を $\alpha$ とする。
$|a| \leq 1$ を証明してください。
投稿日:2024.12.10

<関連動画>

「20+20=200」になる理由を解説

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
「20+20=200」になる理由を解説しています。
この動画を見る 

大阪教育大 複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=1+\sqrt{ 3 }i,\beta=1-\sqrt{ 3 }i$

(1)
$\displaystyle \frac{1}{\alpha^2}+\displaystyle \frac{1}{\beta^2}$の値を求めよ

(2)
$\displaystyle \frac{\beta^8}{\alpha^7}$の値を求めよ

(3)
$z^4=-8\beta$を満たす$z$を求めよ

出典:1999年大阪教育大学 過去問
この動画を見る 

【高校数学】 数Ⅱ-26 複素数④

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の数の平方根を書こう。

①$5$

②$9$

③$-7$

④$-16$

⑤$-12$

◎次の式を計算しよう。

⑥$\sqrt{ -12 }\sqrt{ -3 }$

⑦$\sqrt{ -18 }\sqrt{ 8 }$

⑧$\displaystyle \frac{\sqrt{ -2 }}{\sqrt{ 3 }}$

⑨$\displaystyle \frac{2+\sqrt{ -5 }}{2-\sqrt{ -5 }}$
この動画を見る 

#10数検準1級1次 複素数

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$z=-2-i$の偏角を$\theta$とする.
$\sin4\theta$の値を求めよ.
この動画を見る 

【高校数学】数Ⅲ-4 複素数の絶対値・2点間の距離②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\alpha=3+(2x-1)i,\beta=x+2-i$とする.
2点$A(\alpha),B(\beta)$と原点$O$が一直線上に
あるとき,実数$x$の値を求めよ.

②$z$を複素数とするとき,$\vert z \vert = \vert \overline{z} \vert = \vert -z \vert$を証明せよ.
この動画を見る 
PAGE TOP