福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(2)〜面積と回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(2)〜面積と回転体の体積

問題文全文(内容文):
${\Large\boxed{3}}$(2)曲線$y=\log x$を$C$とする。$t \gt e$として、C上の点$P(t,\ \log t)$におけるCの
接線lとx軸との交点をQ、y軸との交点をRとおく。また、$(0,\ \log t)$で表される
点を$S$とおく。点Qのx座標は$\boxed{\ \ ウ\ \ }$であり、点Rのy座標は$\boxed{\ \ エ\ \ }$である。
座標平面の原点をOとすると、$a \gt 0$のとき、線分ORと線分RSの長さの比が
$a:1$となるのは、$t=\boxed{\ \ オ\ \ }$のときである。したがって、三角形OQRの面積が
三角形SPRの面積の9倍となるのは、$t=\boxed{\ \ カ\ \ }$のときである。
曲線Cとx軸、および直線$x=\boxed{\ \ カ\ \ }$で囲まれた図形をy軸のまわりに一回転
させてできる回転体の体積は$\boxed{\ \ キ\ \ }\pi$となる。

$\boxed{\ \ ウ\ \ }\ 、\boxed{\ \ エ\ \ }$の解答群
$⓪1-\log t  ①1-2\log t  ②\log t-1  ③2\log t-1  ④t(1-\log t)$
$⑤t(1-\log t)  ⑥t(\log t-1)  ⑦t(2\log t-1)  ⑧2t(1-\log t)  ⑨2t(\log t-1)$

$\boxed{\ \ オ\ \ }$の解答群
$⓪1-\log t  ①1-2\log t  ②\log t-1  ③2\log t-1  ④t(1-\log t)$
$⑤t(1-2\log t)  ⑥t(\log t-1)  ⑦t(2\log t-1)  ⑧2t(1-\log t)  ⑨2t(\log t-1)$

$\boxed{\ \ カ\ \ }\ 、\boxed{\ \ キ\ \ }$の解答群
$⓪\ e^4  ①\ e^8  ②\ \frac{e^4-1}{2}  ③\ \frac{e^8-1}{2}  ④\ \frac{5e^4-1}{2}$
$⑤\ \frac{9e^8-1}{2}  ⑥\ \frac{3e^4+1}{2}  ⑦\ \frac{7e^8+1}{2}  ⑧4e^8-e^4+1  ⑨3e^8+1$

2021明治大学全統過去問
単元: #微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$(2)曲線$y=\log x$を$C$とする。$t \gt e$として、C上の点$P(t,\ \log t)$におけるCの
接線lとx軸との交点をQ、y軸との交点をRとおく。また、$(0,\ \log t)$で表される
点を$S$とおく。点Qのx座標は$\boxed{\ \ ウ\ \ }$であり、点Rのy座標は$\boxed{\ \ エ\ \ }$である。
座標平面の原点をOとすると、$a \gt 0$のとき、線分ORと線分RSの長さの比が
$a:1$となるのは、$t=\boxed{\ \ オ\ \ }$のときである。したがって、三角形OQRの面積が
三角形SPRの面積の9倍となるのは、$t=\boxed{\ \ カ\ \ }$のときである。
曲線Cとx軸、および直線$x=\boxed{\ \ カ\ \ }$で囲まれた図形をy軸のまわりに一回転
させてできる回転体の体積は$\boxed{\ \ キ\ \ }\pi$となる。

$\boxed{\ \ ウ\ \ }\ 、\boxed{\ \ エ\ \ }$の解答群
$⓪1-\log t  ①1-2\log t  ②\log t-1  ③2\log t-1  ④t(1-\log t)$
$⑤t(1-\log t)  ⑥t(\log t-1)  ⑦t(2\log t-1)  ⑧2t(1-\log t)  ⑨2t(\log t-1)$

$\boxed{\ \ オ\ \ }$の解答群
$⓪1-\log t  ①1-2\log t  ②\log t-1  ③2\log t-1  ④t(1-\log t)$
$⑤t(1-2\log t)  ⑥t(\log t-1)  ⑦t(2\log t-1)  ⑧2t(1-\log t)  ⑨2t(\log t-1)$

$\boxed{\ \ カ\ \ }\ 、\boxed{\ \ キ\ \ }$の解答群
$⓪\ e^4  ①\ e^8  ②\ \frac{e^4-1}{2}  ③\ \frac{e^8-1}{2}  ④\ \frac{5e^4-1}{2}$
$⑤\ \frac{9e^8-1}{2}  ⑥\ \frac{3e^4+1}{2}  ⑦\ \frac{7e^8+1}{2}  ⑧4e^8-e^4+1  ⑨3e^8+1$

2021明治大学全統過去問
投稿日:2021.09.24

<関連動画>

11岡山県教員採用試験(数学:1-(6) 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(6)$

$y\dfrac{dy}{dx}=y^2+1$
の一般解を求めよ.
この動画を見る 

練習問題33 数検1級1次 微分方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\dfrac{dy}{dx}=(x+y)^2$
の一般解を求めよ.
この動画を見る 

【数Ⅲ】【微分とその応用】関数の最大と最小7 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の最大値、最小値を求めよ。
(1) $ \displaystyle y= \frac{x-1}{x^2+1}$
(2) $y=x- \sqrt{x^2-1}$
(3) $y= \sqrt{x^2+1}+ \sqrt{(x-3)^2+4}$
(4) $y=|x|e^x$
この動画を見る 

【数Ⅲ】【微分とその応用】n次導関数基本 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の第3次導関数を求めよ。
y= √ (2x+1)
以下、略

次のことが成り立つことを証明せよ。
y= x√ (1+x²)のとき、(1+x²)y'' + xy' = 4y
以下、略
この動画を見る 

12岡山県教員採用試験(数学:1-6 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(6)$
$f`(x)=x\sqrt{f(x)}$である.
$f(2)=1$を満たす関数$f(x)$を求めよ.
この動画を見る 
PAGE TOP