福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(2)〜面積と回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(2)〜面積と回転体の体積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} (2)\ 曲線y=\log xをCとする。t \gt eとして、C上の点P(t,\ \log t)におけるCの\\
接線lとx軸との交点をQ、y軸との交点をRとおく。また、(0,\ \log t)で表される\\
点をSとおく。点Qのx座標は\ \boxed{\ \ ウ\ \ }\ であり、点Rのy座標は\ \boxed{\ \ エ\ \ }\ である。\\
座標平面の原点をOとすると、a \gt 0のとき、線分ORと線分RSの長さの比が\\
a:1となるのは、t=\boxed{\ \ オ\ \ }のときである。したがって、三角形OQRの面積が\\
三角形SPRの面積の9倍となるのは、t=\boxed{\ \ カ\ \ }のときである。\\
曲線Cとx軸、および直線x=\boxed{\ \ カ\ \ }で囲まれた図形をy軸のまわりに一回転\\
させてできる回転体の体積は\boxed{\ \ キ\ \ }\ \piとなる。\\
\\
\boxed{\ \ ウ\ \ }\ 、\boxed{\ \ エ\ \ }\ の解答群\\
⓪1-\log t  ①1-2\log t  ②\log t-1  ③2\log t-1  ④t(1-\log t)\\
⑤t(1-\log t)  ⑥t(\log t-1)  ⑦t(2\log t-1)  ⑧2t(1-\log t)  ⑨2t(\log t-1)\\
\\
\boxed{\ \ オ\ \ }\ の解答群\\
⓪1-\log t  ①1-2\log t  ②\log t-1  ③2\log t-1  ④t(1-\log t)\\
⑤t(1-2\log t)  ⑥t(\log t-1)  ⑦t(2\log t-1)  ⑧2t(1-\log t)  ⑨2t(\log t-1)\\
\\
\boxed{\ \ カ\ \ }\ 、\boxed{\ \ キ\ \ }\ の解答群\\
⓪\ e^4  ①\ e^8  ②\ \frac{e^4-1}{2}  ③\ \frac{e^8-1}{2}  ④\ \frac{5e^4-1}{2}  \\
⑤\ \frac{9e^8-1}{2}  ⑥\ \frac{3e^4+1}{2}  ⑦\ \frac{7e^8+1}{2}  ⑧4e^8-e^4+1  ⑨3e^8+1
\end{eqnarray}

2021明治大学全統過去問
単元: #微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} (2)\ 曲線y=\log xをCとする。t \gt eとして、C上の点P(t,\ \log t)におけるCの\\
接線lとx軸との交点をQ、y軸との交点をRとおく。また、(0,\ \log t)で表される\\
点をSとおく。点Qのx座標は\ \boxed{\ \ ウ\ \ }\ であり、点Rのy座標は\ \boxed{\ \ エ\ \ }\ である。\\
座標平面の原点をOとすると、a \gt 0のとき、線分ORと線分RSの長さの比が\\
a:1となるのは、t=\boxed{\ \ オ\ \ }のときである。したがって、三角形OQRの面積が\\
三角形SPRの面積の9倍となるのは、t=\boxed{\ \ カ\ \ }のときである。\\
曲線Cとx軸、および直線x=\boxed{\ \ カ\ \ }で囲まれた図形をy軸のまわりに一回転\\
させてできる回転体の体積は\boxed{\ \ キ\ \ }\ \piとなる。\\
\\
\boxed{\ \ ウ\ \ }\ 、\boxed{\ \ エ\ \ }\ の解答群\\
⓪1-\log t  ①1-2\log t  ②\log t-1  ③2\log t-1  ④t(1-\log t)\\
⑤t(1-\log t)  ⑥t(\log t-1)  ⑦t(2\log t-1)  ⑧2t(1-\log t)  ⑨2t(\log t-1)\\
\\
\boxed{\ \ オ\ \ }\ の解答群\\
⓪1-\log t  ①1-2\log t  ②\log t-1  ③2\log t-1  ④t(1-\log t)\\
⑤t(1-2\log t)  ⑥t(\log t-1)  ⑦t(2\log t-1)  ⑧2t(1-\log t)  ⑨2t(\log t-1)\\
\\
\boxed{\ \ カ\ \ }\ 、\boxed{\ \ キ\ \ }\ の解答群\\
⓪\ e^4  ①\ e^8  ②\ \frac{e^4-1}{2}  ③\ \frac{e^8-1}{2}  ④\ \frac{5e^4-1}{2}  \\
⑤\ \frac{9e^8-1}{2}  ⑥\ \frac{3e^4+1}{2}  ⑦\ \frac{7e^8+1}{2}  ⑧4e^8-e^4+1  ⑨3e^8+1
\end{eqnarray}

2021明治大学全統過去問
投稿日:2021.09.24

<関連動画>

福田のわかった数学〜高校3年生理系087〜グラフを描こう(9)媒介変数表示のグラフ

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(9)\hspace{50pt}\\
\\
\left\{
\begin{array}{1}
x=t\cos t-\sin t\\
y=t\sin t+\cos t\\
\end{array}
\right.  (0 \leqq t \leqq 2\pi)\\
\\
のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る 

東京商船大 微分公式の証明

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京商船大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2-1)^n(n$自然数$)$

(1)
$f'(x)=2nx(x^2-1)^{n-1}$を証明せよ

(2)
$f(x)$の極値を求めよ

出典:東京海洋大学 過去問
この動画を見る 

大阪大 3次関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲

出典:2006年大阪大学 過去問
この動画を見る 

福田の数学〜明治大学2021年理工学部第3問〜単位ベクトルと関数の増減

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} Oを原点とする座標平面上の曲線\ y=\log xをCとする。正の実数\ tに対し、\hspace{30pt}\\
曲線C上の点P(t,\log t)におけるCの法線Lの傾きは\boxed{\ \ か\ \ }である。Lに平行な\\
単位ベクトル\ \overrightarrow{ n }\ で、その\ x\ 成分が正であるものは\overrightarrow{ n }=(\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ })である。\\
さらに、rを正の定数とし、点Qを\overrightarrow{ OQ }=\overrightarrow{ OP }+r\ \overrightarrow{ n }により定めると、\\
Qの座標は(\boxed{\ \ け\ \ },\ \boxed{\ \ こ\ \ })となる。ここで点Qのx座標とy座標をtの関数と見て、\\
それぞれX(t),\ Y(t)とおくとX(t),\ Y(t)の導関数を成分とするベクトル(X'(t),\ Y'(t))\\
はrによらないベクトル(1,\ \boxed{\ \ さ\ \ })と平行であるか、零ベクトルである。\\
定数rの取り方によって関数X(t)の増減の様子は変わる。X(t)が区間\ t \gt 0で\\
常に増加するようなrの値の範囲は\boxed{\ \ し\ \ }である。また、r=2\sqrt2のとき、X(t)は\\
区間\ \boxed{\ \ す\ \ } \leqq t \leqq \boxed{\ \ せ\ \ }で減少し、区間\ 0 \lt t \leqq \boxed{\ \ す\ \ }と区間\ t \geqq \boxed{\ \ せ\ \ }で増加する。
\end{eqnarray}

2021明治大学理工学部過去問
この動画を見る 

x^πを微分せよ

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\gt 0$とする.
$y=x^{\pi}$を微分せよ.
この動画を見る 
PAGE TOP