問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} (2)\ 曲線y=\log xをCとする。t \gt eとして、C上の点P(t,\ \log t)におけるCの\\
接線lとx軸との交点をQ、y軸との交点をRとおく。また、(0,\ \log t)で表される\\
点をSとおく。点Qのx座標は\ \boxed{\ \ ウ\ \ }\ であり、点Rのy座標は\ \boxed{\ \ エ\ \ }\ である。\\
座標平面の原点をOとすると、a \gt 0のとき、線分ORと線分RSの長さの比が\\
a:1となるのは、t=\boxed{\ \ オ\ \ }のときである。したがって、三角形OQRの面積が\\
三角形SPRの面積の9倍となるのは、t=\boxed{\ \ カ\ \ }のときである。\\
曲線Cとx軸、および直線x=\boxed{\ \ カ\ \ }で囲まれた図形をy軸のまわりに一回転\\
させてできる回転体の体積は\boxed{\ \ キ\ \ }\ \piとなる。\\
\\
\boxed{\ \ ウ\ \ }\ 、\boxed{\ \ エ\ \ }\ の解答群\\
⓪1-\log t ①1-2\log t ②\log t-1 ③2\log t-1 ④t(1-\log t)\\
⑤t(1-\log t) ⑥t(\log t-1) ⑦t(2\log t-1) ⑧2t(1-\log t) ⑨2t(\log t-1)\\
\\
\boxed{\ \ オ\ \ }\ の解答群\\
⓪1-\log t ①1-2\log t ②\log t-1 ③2\log t-1 ④t(1-\log t)\\
⑤t(1-2\log t) ⑥t(\log t-1) ⑦t(2\log t-1) ⑧2t(1-\log t) ⑨2t(\log t-1)\\
\\
\boxed{\ \ カ\ \ }\ 、\boxed{\ \ キ\ \ }\ の解答群\\
⓪\ e^4 ①\ e^8 ②\ \frac{e^4-1}{2} ③\ \frac{e^8-1}{2} ④\ \frac{5e^4-1}{2} \\
⑤\ \frac{9e^8-1}{2} ⑥\ \frac{3e^4+1}{2} ⑦\ \frac{7e^8+1}{2} ⑧4e^8-e^4+1 ⑨3e^8+1
\end{eqnarray}
2021明治大学全統過去問
\begin{eqnarray}
{\Large\boxed{3}} (2)\ 曲線y=\log xをCとする。t \gt eとして、C上の点P(t,\ \log t)におけるCの\\
接線lとx軸との交点をQ、y軸との交点をRとおく。また、(0,\ \log t)で表される\\
点をSとおく。点Qのx座標は\ \boxed{\ \ ウ\ \ }\ であり、点Rのy座標は\ \boxed{\ \ エ\ \ }\ である。\\
座標平面の原点をOとすると、a \gt 0のとき、線分ORと線分RSの長さの比が\\
a:1となるのは、t=\boxed{\ \ オ\ \ }のときである。したがって、三角形OQRの面積が\\
三角形SPRの面積の9倍となるのは、t=\boxed{\ \ カ\ \ }のときである。\\
曲線Cとx軸、および直線x=\boxed{\ \ カ\ \ }で囲まれた図形をy軸のまわりに一回転\\
させてできる回転体の体積は\boxed{\ \ キ\ \ }\ \piとなる。\\
\\
\boxed{\ \ ウ\ \ }\ 、\boxed{\ \ エ\ \ }\ の解答群\\
⓪1-\log t ①1-2\log t ②\log t-1 ③2\log t-1 ④t(1-\log t)\\
⑤t(1-\log t) ⑥t(\log t-1) ⑦t(2\log t-1) ⑧2t(1-\log t) ⑨2t(\log t-1)\\
\\
\boxed{\ \ オ\ \ }\ の解答群\\
⓪1-\log t ①1-2\log t ②\log t-1 ③2\log t-1 ④t(1-\log t)\\
⑤t(1-2\log t) ⑥t(\log t-1) ⑦t(2\log t-1) ⑧2t(1-\log t) ⑨2t(\log t-1)\\
\\
\boxed{\ \ カ\ \ }\ 、\boxed{\ \ キ\ \ }\ の解答群\\
⓪\ e^4 ①\ e^8 ②\ \frac{e^4-1}{2} ③\ \frac{e^8-1}{2} ④\ \frac{5e^4-1}{2} \\
⑤\ \frac{9e^8-1}{2} ⑥\ \frac{3e^4+1}{2} ⑦\ \frac{7e^8+1}{2} ⑧4e^8-e^4+1 ⑨3e^8+1
\end{eqnarray}
2021明治大学全統過去問
単元:
#微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} (2)\ 曲線y=\log xをCとする。t \gt eとして、C上の点P(t,\ \log t)におけるCの\\
接線lとx軸との交点をQ、y軸との交点をRとおく。また、(0,\ \log t)で表される\\
点をSとおく。点Qのx座標は\ \boxed{\ \ ウ\ \ }\ であり、点Rのy座標は\ \boxed{\ \ エ\ \ }\ である。\\
座標平面の原点をOとすると、a \gt 0のとき、線分ORと線分RSの長さの比が\\
a:1となるのは、t=\boxed{\ \ オ\ \ }のときである。したがって、三角形OQRの面積が\\
三角形SPRの面積の9倍となるのは、t=\boxed{\ \ カ\ \ }のときである。\\
曲線Cとx軸、および直線x=\boxed{\ \ カ\ \ }で囲まれた図形をy軸のまわりに一回転\\
させてできる回転体の体積は\boxed{\ \ キ\ \ }\ \piとなる。\\
\\
\boxed{\ \ ウ\ \ }\ 、\boxed{\ \ エ\ \ }\ の解答群\\
⓪1-\log t ①1-2\log t ②\log t-1 ③2\log t-1 ④t(1-\log t)\\
⑤t(1-\log t) ⑥t(\log t-1) ⑦t(2\log t-1) ⑧2t(1-\log t) ⑨2t(\log t-1)\\
\\
\boxed{\ \ オ\ \ }\ の解答群\\
⓪1-\log t ①1-2\log t ②\log t-1 ③2\log t-1 ④t(1-\log t)\\
⑤t(1-2\log t) ⑥t(\log t-1) ⑦t(2\log t-1) ⑧2t(1-\log t) ⑨2t(\log t-1)\\
\\
\boxed{\ \ カ\ \ }\ 、\boxed{\ \ キ\ \ }\ の解答群\\
⓪\ e^4 ①\ e^8 ②\ \frac{e^4-1}{2} ③\ \frac{e^8-1}{2} ④\ \frac{5e^4-1}{2} \\
⑤\ \frac{9e^8-1}{2} ⑥\ \frac{3e^4+1}{2} ⑦\ \frac{7e^8+1}{2} ⑧4e^8-e^4+1 ⑨3e^8+1
\end{eqnarray}
2021明治大学全統過去問
\begin{eqnarray}
{\Large\boxed{3}} (2)\ 曲線y=\log xをCとする。t \gt eとして、C上の点P(t,\ \log t)におけるCの\\
接線lとx軸との交点をQ、y軸との交点をRとおく。また、(0,\ \log t)で表される\\
点をSとおく。点Qのx座標は\ \boxed{\ \ ウ\ \ }\ であり、点Rのy座標は\ \boxed{\ \ エ\ \ }\ である。\\
座標平面の原点をOとすると、a \gt 0のとき、線分ORと線分RSの長さの比が\\
a:1となるのは、t=\boxed{\ \ オ\ \ }のときである。したがって、三角形OQRの面積が\\
三角形SPRの面積の9倍となるのは、t=\boxed{\ \ カ\ \ }のときである。\\
曲線Cとx軸、および直線x=\boxed{\ \ カ\ \ }で囲まれた図形をy軸のまわりに一回転\\
させてできる回転体の体積は\boxed{\ \ キ\ \ }\ \piとなる。\\
\\
\boxed{\ \ ウ\ \ }\ 、\boxed{\ \ エ\ \ }\ の解答群\\
⓪1-\log t ①1-2\log t ②\log t-1 ③2\log t-1 ④t(1-\log t)\\
⑤t(1-\log t) ⑥t(\log t-1) ⑦t(2\log t-1) ⑧2t(1-\log t) ⑨2t(\log t-1)\\
\\
\boxed{\ \ オ\ \ }\ の解答群\\
⓪1-\log t ①1-2\log t ②\log t-1 ③2\log t-1 ④t(1-\log t)\\
⑤t(1-2\log t) ⑥t(\log t-1) ⑦t(2\log t-1) ⑧2t(1-\log t) ⑨2t(\log t-1)\\
\\
\boxed{\ \ カ\ \ }\ 、\boxed{\ \ キ\ \ }\ の解答群\\
⓪\ e^4 ①\ e^8 ②\ \frac{e^4-1}{2} ③\ \frac{e^8-1}{2} ④\ \frac{5e^4-1}{2} \\
⑤\ \frac{9e^8-1}{2} ⑥\ \frac{3e^4+1}{2} ⑦\ \frac{7e^8+1}{2} ⑧4e^8-e^4+1 ⑨3e^8+1
\end{eqnarray}
2021明治大学全統過去問
投稿日:2021.09.24