バングラデシュ数学オリンピック - 質問解決D.B.(データベース)

バングラデシュ数学オリンピック

問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=1 \\
x^5+y^5=31
\end{array}
\right.
\end{eqnarray}
$
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=1 \\
x^5+y^5=31
\end{array}
\right.
\end{eqnarray}
$
投稿日:2023.12.08

<関連動画>

複素数 広島大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^2=8+6i$のとき,$z^3-16z-\dfrac{100}{z}$の値を求めよ.

1966広島大過去問
この動画を見る 

日本女子大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#日本女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\displaystyle \frac{1+i}{\sqrt{ 3 }+i}$

$a^n$が正の実数となるような最小の自然数$n$

出典:日本女子大学 過去問
この動画を見る 

2022九州大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
kは実数であり,整式f(x)を$ f(x)=x^4+6x^3-kx^2+2kx-64 $で定める.
f(x)=0が虚数解をもつとき,
(1)f(x)はx-2で割り切れることを示せ.
(2)f(x)=0は負の実数解をもつことを示せ.
(3)f(x)=0のすべての実数解が整数で,すべての虚数解の実部と虚部が
ともに整数である.kの値を求めよ.

2022九州大過去問
この動画を見る 

弘前大 積分 面積公式導出 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'90弘前大学過去問題
$C:y=x^3-(a+3)x^2+3ax+5$
$L:y=3x-4$
CとLの共有点が2点のとき、CとLで囲まれる面積
この動画を見る 

綺麗な三次方程式

アイキャッチ画像
単元: #数Ⅱ#式と証明#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x-3)^3+(x-2)^3+(x-1)^3=x^3$
これを解け.
この動画を見る 
PAGE TOP