関西医科大 三項間漸化式 - 質問解決D.B.(データベース)

関西医科大 三項間漸化式

問題文全文(内容文):
$ a_1=0,a_2=1$
$a_{n+2}=10a_{n+1}+51a_{n}$とする。

①一般項$a_n$を求めよ。
②$a_n$を10で割ったあまりを$b_n$とする。
$\displaystyle \sum_{k=1}^{2m} b_k$を求めよ。

関西医科大過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=0,a_2=1$
$a_{n+2}=10a_{n+1}+51a_{n}$とする。

①一般項$a_n$を求めよ。
②$a_n$を10で割ったあまりを$b_n$とする。
$\displaystyle \sum_{k=1}^{2m} b_k$を求めよ。

関西医科大過去問
投稿日:2023.03.26

<関連動画>

【For you 動画-16】  数B-数学的帰納法

アイキャッチ画像
単元: #数学的帰納法#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
[i]①____のとき成り立つことを確かめる。
[ii]②____のとき成り立つと③____ して、それを使って④____ のときに成り立つことをいう。

[iii]『以上より、すべての自然数に ついて成り立つ』と書こう!

◎$n$を自然数とするとき、$3^{n} \gt 2n$を証明しよう!

[i]⑤____のとき、⑥____ より成り立つ。

[ii]⑦____のとき成り立つと⑧すると


⑩____のとき、⑪____ を考えると
$\boxed{ ⑫ }$

つまり $3^{k+1} \gt 2(k+1)$となり
$n=k+1$のとき成り立つ。

[ iii] 以上より、すべての自然数について成り立つ。
この動画を見る 

関西大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
関西大学過去問題
n自然数
$a_1=3 \quad\quad a_{n+1}=2a_n-n^2+n$
$a_n$をnで表せ

立教大学過去問題
$2^{18}-1$を素因数分解
この動画を見る 

早稲田大(政)漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$S_n=2a_n^2+\displaystyle \frac{1}{2}a_n-\displaystyle \frac{3}{2}$

すべての項は同符号
一般項を求めよ

出典:2001年早稲田大学 政治経済学部 過去問
この動画を見る 

1+2=❓  AKB□❗️❗️

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
1+2=
(a) 1!
(b) 2!
(c) 3!
(d) 3!!
この動画を見る 

大学入試問題#862「計算力と根性!」 #京都大学(2023) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=3 \\
a_n=\displaystyle \frac{S_n}{n}+(n-1)・2^n
\end{array}
\right.
\end{eqnarray}$
を満たすような数列$\{a_n\}$の一般項を求めよ

出典:2023年京都大学 入試問題
この動画を見る 
PAGE TOP