【良問】数IIの知識で解けます【山形大学】【数学 入試問題】 - 質問解決D.B.(データベース)

【良問】数IIの知識で解けます【山形大学】【数学 入試問題】

問題文全文(内容文):
T=sinθcosθ1+sin2θとする。
θ0<θ<π2の範囲を動くとき、Tの最大値を求めよ。

山形大過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#点と直線#円と方程式#加法定理とその応用#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
T=sinθcosθ1+sin2θとする。
θ0<θ<π2の範囲を動くとき、Tの最大値を求めよ。

山形大過去問
投稿日:2022.04.20

<関連動画>

福田の一夜漬け数学〜図形と方程式〜円の方程式(8)外から引いた接線(原点中心の円の場合)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#点と直線#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 円x2+y2=5 の接線で、点(3,1)を通るものを求めよ。
また、接点の座標を求めよ。
この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第2問〜放物線に反射する直線の方程式と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#微分法と積分法#点と直線#円と方程式#微分とその応用#積分とその応用#接線と法線・平均値の定理#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
xy平面上の放物線P:y2=4x上に異なる2点A,Bをとり、A,Bそれぞれに
おいてPへの接線と直交する直線をnA, nBとする。aを正の数として、点Aの座標
(a, 4a)とするとき、以下の各問いに答えよ。
(1) nAの方程式を求めよ。
(2)直線ABと直線y=4aとがなす角の2等分線の一つが、nAに一致する
とき、直線ABの方程式をaを用いて表せ。
(3)(2)のとき、点Bを通る直線rBを考える。rBと直線ABとがなす角の
2等分線の一つが、nBに一致するとき、rBの方程式をaを用いて表せ。
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\
y=4a、直線x=1および(3)のrBで囲まれた図形の面積をS2とする。
aを変化させたとき、S1S2の最大値を求めよ。

2022東京医科歯科大学理系過去問
この動画を見る 

【高校数学】 数Ⅱ-55 点と直線⑤

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①3点A(4,5)、B(6,7)、C(7.3)を頂点とする平行四辺形の残りの頂点Dの座標を求めよう。
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第3問〜円の外接円の半径と円周上の点と原点の距離の最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
3 O(0,0), A(0,1), B(p,q)を座標平面上の点とし、pは0でないとする。
AとBを通る直線をlとおく。Oを中心としlに接する円の面積をD1で表す。
また、3点O,A,Bを通る円周で囲まれる円の面積をD2とおく。次の問いに答えよ。
(1)D1p,qを使って表せ。
(2)点(2,23)を中心とする半径1の円周をCとする。点BがC上を動くときの
D1D2の積D1D2の最小値と最大値を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

【数Ⅱ】点と直線の距離の公式【導出をしてみよう】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
点と直線の距離の公式の求め方に関して解説していきます.
この動画を見る 
PAGE TOP preload imagepreload image