ヨビノリたくみ 東大 非典型的な漸化式 - 質問解決D.B.(データベース)

ヨビノリたくみ 東大 非典型的な漸化式

問題文全文(内容文):
$f(x)=\dfrac{\log_x}{x}(x \gt 0)$である.

(1)$f^{(n)}(x)=\dfrac{a_n+b_n\log x}{x^{n+1}}$と表される事を示し,漸化式を求めよ.
(2)$h_n=\displaystyle \sum_{\beta=1}^n \dfrac{1}{k}$を用いて,$a_n,b_n$の一般項を求めよ.

2005東大過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=\dfrac{\log_x}{x}(x \gt 0)$である.

(1)$f^{(n)}(x)=\dfrac{a_n+b_n\log x}{x^{n+1}}$と表される事を示し,漸化式を求めよ.
(2)$h_n=\displaystyle \sum_{\beta=1}^n \dfrac{1}{k}$を用いて,$a_n,b_n$の一般項を求めよ.

2005東大過去問
投稿日:2020.12.27

<関連動画>

15三重県教員採用試験(数学:4番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$a_1=2,b_1=4$,
$a_{n+1}=3a_n+2b_n$
$b_{n+1}=4a_n+5b_n$
一般項$a_n,b_n$を求めよ.
この動画を見る 

岡山県立大 バーゼル問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#岡山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
証明せよ

$\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{k^2} \leqq 2-\displaystyle \frac{1}{n}$

出典:岡山県立大学 過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題090〜名古屋大学2018年度理系第1問〜定積分と不等式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数nに対し、定積分$I_n$=$\displaystyle\int_0^1\frac{x^n}{x^2+1}dx$を考える。このとき、次の問いに答えよ。
(1)$I_n$+$I_{n+2}$=$\frac{1}{n+1}$を示せ。
(2)0≦$I_{n+1}$≦$I_n$≦$\frac{1}{n+1}$を示せ。
(3)$\displaystyle\lim_{n \to \infty}nI_n$ を求めよ。
(4)$S_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{2k}$ とする。このとき(1), (2)を用いて$\displaystyle\lim_{n \to \infty}S_n$ を求めよ。

2018名古屋大学理系過去問
この動画を見る 

【数B】【数列】a、bは、正の整数でa<bとする。aとbの間にあって、5を分母とするすべての分数(整数を除く)の和を求めよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
a、bは、正の整数でa<bとする。aとbの間にあって、5を分母とするすべての分数(整数を除く)の和を求めよ。
この動画を見る 

差がつく問題!記号が多くても焦らずに解けば大丈夫!【お茶の水女子大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$m$を2以上の自然数,$n$を自然数とするとき,次の不等式

${}_{mn} \mathrm {C}_n≧m^n>\displaystyle \sum_{i=0}^{n-1} m^i$

が成り立つことを示せ。

お茶の水女子大過去問
この動画を見る 
PAGE TOP