福田の数学〜九州大学2023年文系第4問PART1〜確率漸化式 - 質問解決D.B.(データベース)

福田の数学〜九州大学2023年文系第4問PART1〜確率漸化式

問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
投稿日:2023.06.18

<関連動画>

【高校数学】  数A-23  確率⑤ ・ 色玉編 Part.1

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎袋の中に白玉5個、赤玉4個が入っている。
ここから、球を同時に5個とり出す。
①白玉が4個、赤玉1個出る確率は?
②同じ色の玉が2個出る確率は?
この動画を見る 

福田の数学〜千葉大学2023年第2問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 1個のさいころを投げて出た目によって得点を得るゲームを考える。出た目が1,2であれば得点は2、出た目が3であれば得点は1、出た目が4,5,6であれば得点は0とする。このゲームを$k$回繰り返すとき、得点の合計を$S_k$とする。
(1)$S_2$=3 となる確率を求めよ。
(2)$S_3$が奇数となる確率を求めよ。
(3)$S_4$≧$n$となる確率が$\frac{1}{9}$以下となる最小の整数$n$を求めよ。
この動画を見る 

福田のわかった数学〜高校1年生075〜場合の数(14)道順(1)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(14) 道順(1)
右の街路図(※動画参照)を点Aから出発して3回だけ曲がってBへ
到達する最短経路は何通りあるか。
この動画を見る 

福田の数学〜北海道大学2024年理系第2問〜反復試行の確率と条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 各面に1つずつ数が書かれた正八面体のさいころがある。「1」、「2」、「3」が書かれた面がそれぞれ1つずつあり、残りの5つの面には「0」が書かれている。このさいころを水平な面に投げて、出た面に書かれた数を持ち点に加えるという試行を考える。最初の持ち点は0とし、この試行を繰り返す。例えば、3回の試行を行ったとき、出た面に書かれた数が「0」、「2」、「3」であれば、持ち点は5となる。なお、さいころが水平な床面にあるとき、さいころの上部の水平な面を出た面と呼ぶ。また、さいころを投げるとき、各面が出ることは同様に確からしいとする。
(1)この試行を$n$回行ったとき、持ち点が2以下である確率を求めよ。ただし、$n$は2以上の自然数とする。
(2)この試行を4回行って持ち点が10以上であった時に、さらにこの試行を2回行って持ち点が17以上である条件付き確率を求めよ。
この動画を見る 

絶対に取りたい問題!京大の確率の問題!【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正四角形$ABCD$を考える。点$P$は時刻0では頂点$A$に位置し、1秒毎にある頂点から他の3頂点のいずれかに、等しい確率で動くとする。このとき、時刻0から時刻$n$までの間に、4頂点$A,B,C,D$のすべてに点$P$が現れる確率を求めよ。
ただし、$n$は1以上の整数とする。

京都大過去問
この動画を見る 
PAGE TOP