【演習で復習・解説!】条件付き確率を5分で復習!〔数学 高校数学〕 - 質問解決D.B.(データベース)

【演習で復習・解説!】条件付き確率を5分で復習!〔数学 高校数学〕

問題文全文(内容文):
大小のサイコロを1個ずつ投げた。このとき以下の2つの事象を定義する。
A: 大きいサイコロの目が4
B: サイコロの目の和が9
以下の問に答えよ。
(1)事象Aが起こる確率と事象Bが起こる確率をそれぞれ求めよ。
(2)事象Bが起こった時の事象Aが起こる条件付き確率を求めよ。
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
大小のサイコロを1個ずつ投げた。このとき以下の2つの事象を定義する。
A: 大きいサイコロの目が4
B: サイコロの目の和が9
以下の問に答えよ。
(1)事象Aが起こる確率と事象Bが起こる確率をそれぞれ求めよ。
(2)事象Bが起こった時の事象Aが起こる条件付き確率を求めよ。
投稿日:2021.10.14

<関連動画>

福田の数学〜上智大学2023年TEAP利用型文系第3問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ ある病原菌にはA型、B型の2つの型がある。A型とB型に同時に感染することはない。その病原菌に対して、感染しているかどうかを調べる検査Yがある。
検査結果は陽性か陰性のいずれかで、陽性であったときに病原菌の型までは判別できないものとする。検査Yで、A型の病原菌に感染しているのに陰性と判定される確率が10 %であり、B型の病原菌に感染しているのに陰性と判定される確率が20 %である。また、この病原菌に感染していないのに陽性と判定される確率が10 %である。
全体の1 %がA型に感染しており全体の4 %がB型に感染している集団から1人を選び検査Yを実施する。
(1)検査Yで陽性と判定される確率は$\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}$である。
(2)検査Yで陽性だった時に、A型に感染している確率は$\frac{\boxed{\ \ ハ\ \ }}{\boxed{\ \ ヒ\ \ }}$でありB型に感染している確率は$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}$である。
(3)1回目の検査Yに加えて、その直後に同じ検査Yをもう一度行う。ただし、1回目と2回目の検査結果は互いに独立であるとする。2回の検査結果が共に陽性であったときに、A型に感染している確率は$\frac{\boxed{\ \ ホ\ \ }}{\boxed{\ \ マ\ \ }}$でありB型に感染している確率は$\frac{\boxed{\ \ ミ\ \ }}{\boxed{\ \ ム\ \ }}$である。
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第6問〜期待値から経営戦略を立てる

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$A社はB氏を報酬wで雇っている(wは正の実数)。A社の売り上げはB氏の努力水準に
依存しており、B氏の努力水準が低いとA社の売り上げは200だが、B氏の努力水準が
高い場合、A社の売り上げは70%の確率で500となり、30%の確率で200のままとなる。
そして、このことはB氏も知っている。ただし、B氏は努力水準を高める際に17.5の
苦痛を感じる。そのため、報酬wの下で努力水準を高めると、B氏の実質的な報酬は
w-17.5となってしまう。B氏は完全にテレワークをしており、B氏の努力水準を
A社が直接知ることはできないし、B氏が努力水準を高めるように強制することも
できない。すると$w \gt w-17.5$であることから、B氏は努力水準を高めないことが
合理的な行動となる。
以下では、不確実性下の意思決定を扱っているが(1),(2),(3)のいずれにおいても、
A社、B氏共に期待値の大小のみに関心があるものと仮定して解答すること。

(1)いま、A社は売上が500になったあときにはB氏の報酬を$w_1$に引き上げ、200のとき
には$w_0$に据え置くアイデアを思いついた。B氏が努力水準を高めるには、
$w_1 \geqq w_0+\boxed{\ \ アイウ\ \ }.\boxed{\ \ エオ\ \ }$である必要がある。

次に、B氏は、A社をやめても他の会社に報酬100で雇われることが可能であるとする。
(2)A社の利潤を売上からB氏への報酬を引いた残りだと単純化すると、$w_1$と$w_0$を適切に
定めることにより、B氏にA社をやめさせず、かつ努力水準を高めさせるためには、
A社の利潤の期待値を$\boxed{\ \ カキク\ \ }.\boxed{\ \ ケコ\ \ }$以下とする必要がある。
また、A社の利潤の期待値が最大化された時、$w_1:w_0=5:4$を満たす$w_0$の値は
$\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }$

以下では、B氏の$w_0$の値をこの$w_0$の値をこの$\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }$とする。
(3)実は、B氏の関心は報酬wそのものではなく、そこから得られる満足と解釈される
$10\sqrt w$であることが分かった。そのため、努力水準を高める際の苦痛17.5もこの値
から差し引かれ、努力水準を高めたときのB氏の満足は$10\sqrt w-17.5$となる。
B氏は(実質的な)報酬を最大化する人ではなく、満足を最大化する人だとしたとき、
B氏にA社をやめさせず、かつ努力水準を高めさせえるためには、$w_1 \geqq \boxed{\ \ タチツ\ \ }.\boxed{\ \ テト\ \ }$

2021慶應義塾大学総合政策学部過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第2問〜確率と極限

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)2n個の玉があり、そのうちk個は赤、他は白とする。ただし$n>k>1$である。
また袋A, Bが用意されているとする。
(1) 2n 個の玉からn個を無作為に選んで袋Aに入れ、残りを袋Bに入れる。袋A
にi個 $(0 \leqq i \leqq k)$ の赤玉が入る確率を $p(n, k, i)$ とおく。kとiを固定して$n \to \infty$
とするときの p(n, k, i) の極限値をkとiの式で表すと $\lim_{n \to \infty} p(n, k, i) =\boxed{\ \ ア\ \ }$
となる。また$n>3$のとき $p(n, 3, 1) = \boxed{\ \ イ\ \ }$である。
以下、$n>k=3$として、袋Aに赤玉が1個、袋Bに赤玉が2個入っている状態を
状態Sと呼ぶ。また袋A, Bのそれぞれから同時に玉を1個ずつ無作為に取り出し
て、玉が入っていた袋と逆の袋に入れる操作を操作Tと呼ぶ。
(2) 状態 Sから始めて操作を1回行った後で袋Aから玉を1個無作為に取り出す
とき、取り出した玉が赤玉である確率は$\boxed{\ \ ウ\ \ }$である。また、取り出した玉が赤玉
だったとき、操作 T終了後に袋Aに赤玉が2個入っていた条件つき確率は$\boxed{\ \ エ\ \ }$
である。
(3)状態Sから始めて操作Tを3回繰り返し行った後に、袋Aに赤玉が3個入っている
確率は$\boxed{\ \ オ\ \ }$である。
(4)状態Sから初めて袋A,Bのそれぞれから同時に玉を3個ずつ無作為に取り出して、
それらを玉が入っていた袋と逆の袋に入れた後に、袋Aに赤玉が3個入っている
確率は$\boxed{\ \ カ\ \ }$である。

2022慶應義塾大学医学部過去問
この動画を見る 

福田のわかった数学〜高校1年生066〜場合の数(5)色々な順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(5) 並べ方色々
男子5人、女子3人(a,b,cとする)が次のように横一列に
並ぶ方法は何通りか。
(1)女子3人が隣り合う並び方
(2)どの女子2人も隣り合わない並び方
(3)aがbより左、bがcより左に現れる並び方
この動画を見る 

【宝くじ】数学的に正しい宝くじの必勝法教えます!宝くじの当選確率ってどれくらい?

アイキャッチ画像
単元: #数学(中学生)#場合の数と確率#確率#確率#数学(高校生)
指導講師: こばちゃん塾
問題文全文(内容文):
宝くじを買ったときの当選金の期待値は?
(詳細は動画内参照)
この動画を見る 
PAGE TOP