【演習で復習・解説!】条件付き確率を5分で復習!〔数学 高校数学〕 - 質問解決D.B.(データベース)

【演習で復習・解説!】条件付き確率を5分で復習!〔数学 高校数学〕

問題文全文(内容文):
大小のサイコロを1個ずつ投げた。このとき以下の2つの事象を定義する。
A: 大きいサイコロの目が4
B: サイコロの目の和が9
以下の問に答えよ。
(1)事象Aが起こる確率と事象Bが起こる確率をそれぞれ求めよ。
(2)事象Bが起こった時の事象Aが起こる条件付き確率を求めよ。
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
大小のサイコロを1個ずつ投げた。このとき以下の2つの事象を定義する。
A: 大きいサイコロの目が4
B: サイコロの目の和が9
以下の問に答えよ。
(1)事象Aが起こる確率と事象Bが起こる確率をそれぞれ求めよ。
(2)事象Bが起こった時の事象Aが起こる条件付き確率を求めよ。
投稿日:2021.10.14

<関連動画>

こう見えても慶應義塾

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数A#数と式#場合の数と確率#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
絶対値が2になる数と49の平方根の和は何通り?

慶應義塾高等学校
この動画を見る 

福田のおもしろ数学009〜あなたはネコを見つけられるか〜箱から箱へ移動するネコを見つける方法

アイキャッチ画像
単元: #数A#場合の数と確率#確率#その他#その他#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
あなたはネコを見つけられるか?
猫は毎晩となりの箱に移動する。
開けられる箱は毎朝ひとつだけ。
この動画を見る 

【数A】【場合の数と確率】コインを投げたときの得点の期待値 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3枚の硬貨を同時に投げて、表が3枚出たら100点、2枚出たら50点を獲得し、1枚のときは60点を、1枚も出ていないときは70点を失うものとする。1回硬貨を投げるときの得点の期待値を求めよ。
この動画を見る 

場合の数

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n,x,y,z$は$0$以上の整数
$2x+y+z=n$を満たす$(x,y,z)$は何組あるか求めよ
この動画を見る 

2024年共通テスト解答速報〜数学ⅠA第3問〜福田の入試問題解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2024共通テスト数学ⅠA第3問解説です

箱の中にカ ー ドが 2 枚以上入っており、それぞれのカ ードにはアルファベットが一文字だけ書かれている。この箱の中からカ ー ドを一枚取り出し、書かれているアルファベットを確認してからもとに戻すという試行をり返し行う。
(1)箱の中にA,Bのカードが 1 枚ずつ全部で 2 枚入っている場合を考える。以下では、2 以上の自然数nに対しn回の試行で A. Bがそろっているとは、n回の試行でA,Bのそれぞれが少なくとも1回は取り出されることを意味する。
(i)2回の試行でA,Bがそろっている確率は$\dfrac{ア}{イ}$である。
(ii)3回の試行でA,Bがそろっている確率を求める。
 例えば、3回の試行のうちAを1回、Bを2回取り出す取り出し方は3通りあり、それらを全て挙げると次のようになる。※表は動画内参照
このように考えることにより、3 回の試行で A. B がそろっている取り出し方はウ通りあることがわかる。よって、3 回の試行で A. B がそろっている確率は$\dfrac{ウ}{2^3}$である。
(iii) 4 回の試行で A. B がそろっている取り出し方はエオ通りある。 よって、4 回の試行でA,B がそろっている確率は$\dfrac{カ}{キ}$である。
(2)箱の中にA,B,Cのカ ー ドが一枚ずつ全で 3 枚入っている場合を考える。
以下では、3 以上の自然数nに対しn回目の試行で初めて A. B. C がそろうとn回の試行で A,B,Cのそれぞれが少なくとも1回は取り出されかつA,B.Cのうちいずれか1枚がn回目の試行で初めて取り出されることを意味する。
(i)3 回目の試行で初めて A. B, C がそろう取り出し方はク通りある。よって、3 回目の試行で初めて A. B, C がそろう確率は$\dfrac{ク}{3^3}$である。
(ii) 4 回目の試行で初めて A.B,C がそろう確率を求める。4 回目の試行で初めて A. B. C がそろう取り出し方は.(1)の(ii)を振り返ることにより、3×ウ通りあることがわかる。よって、4 回目の試行で初めて A. B, C がそろう確率は$\dfrac{ケ}{コ}$である。
(iii)5 回目の試行で初めて A. B. C がそろう取り出し方はサシ通りある。よってを 5 回目の試行で初めてA,B,Cがそろう確率は$\dfrac{サシ}{3^3}$である。
太郎さんと花子さんは. 6 回目の試行で初めて A. B, C, D がそろう確率について考えている。
太郎:例えば. 5 回目までにA,B,Cのそれぞれが少なくとも1回は取り出され.かっ 6 回目に初めてDが取り出される場合を考えたら計算できそうだね。
花子:それなら初めて A. B. C だけがそろうのが, 3 回目のとき. 4 回目のとき. 5 回目のときで分けて考えてみてはどうかな。
6 回の試行のうち 3 回目の試行で初めて A. B. C だけがそろう取り出し方がク通りであることに注意すると「 6 回の試行のうち 3 回目の試行で初めて A. B. C だけがそろい、かつ6 回目の試行で初めてDが取り出される取り出し方はスセ通りあることがわかる。同じように考えると6回の試行のうち 4 回目の試行で初めて A, B, C だけがそろい、かっ 6 回目の試行で初めてDが取り出される」取り出し方はソタ通りあることもわかる。以上のように考えることにより, 6 回目の試行で初めて A. B. C, D がそろう確率は$\dfrac{チツ}{テトナ}$であることがわかる。

2024共通テスト過去問
この動画を見る 
PAGE TOP