#自治医科大(2015) - 質問解決D.B.(データベース)

#自治医科大(2015)

問題文全文(内容文):
$\displaystyle \frac{1}{1+\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }+\sqrt{ 5 }}+\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 7 }}+\displaystyle \frac{1}{\sqrt{ 7 }+\sqrt{ 9 }}$

出典:2015年自治医科大学
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{1}{1+\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }+\sqrt{ 5 }}+\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 7 }}+\displaystyle \frac{1}{\sqrt{ 7 }+\sqrt{ 9 }}$

出典:2015年自治医科大学
投稿日:2024.06.11

<関連動画>

福田の数学〜慶應義塾大学2023年看護医療学部第3問〜三角比と図形の計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 半径Rの円に内接する四角形ABCDにおいて
AB=1+$\sqrt3$, BC=CD=2, $\angle$ABC=60°
であるとき、$\angle$ADCの大きさは$\angle$ADC=$\boxed{\ \ ソ\ \ }$であり、AC,AD,Rの長さはそれぞれAC=$\boxed{\ \ タ\ \ }$, AD=$\boxed{\ \ チ\ \ }$, R=$\boxed{\ \ ツ\ \ }$である。
また、四角形ABCDの面積は$\boxed{\ \ テ\ \ }$である。さらに、θ=$\angle$DABとするとき、$\sin\theta$=$\boxed{\ \ ト\ \ }$であり、BDの長さはBD=$\boxed{\ \ ナ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

角の和 茨城県 動画内に誘導あり 茨城県

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle BAC + \angle CDE$=?
*図は動画内参照

茨城県
この動画を見る 

【高校数学】数Ⅰ-36 2次関数②(値域編)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の値域を求めよう。また、最大値、最小値があれば、それをもとめよう。

①$y=2x+1(2 \leqq x \leqq 3)$
②$y=-3x+2(-1 \leqq x \leqq 2)$
③$y=x^2(-3 \leqq x \leqq 1)$
④$y=3x-5(1 \leqq x \lt 4)$
この動画を見る 

福田のわかった数学〜高校1年生042〜三角比の相互関係

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$三角比の相互関係
$0° \lt \theta \lt 180°$とする。
$4\cos\theta+2\sin\theta=\sqrt2$のとき
$\tan\theta$ の値を求めよ。
この動画を見る 

息抜き

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^2-3a+1=0$のとき,$a^6+\dfrac{1}{a^6}$の値を求めよ.
この動画を見る 
PAGE TOP