【フル】文系の私にモンティホール問題を分かりやすく教えて - 質問解決D.B.(データベース)

【フル】文系の私にモンティホール問題を分かりやすく教えて

問題文全文(内容文):
モンティホール問題を分かりやすく解説動画です
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
モンティホール問題を分かりやすく解説動画です
投稿日:2024.03.01

<関連動画>

福田の入試問題解説〜慶應義塾大学2022年医学部第2問〜確率と極限

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)2n個の玉があり、そのうちk個は赤、他は白とする。ただし$n>k>1$である。
また袋A, Bが用意されているとする。
(1) 2n 個の玉からn個を無作為に選んで袋Aに入れ、残りを袋Bに入れる。袋A
にi個 $(0 \leqq i \leqq k)$ の赤玉が入る確率を $p(n, k, i)$ とおく。kとiを固定して$n \to \infty$
とするときの p(n, k, i) の極限値をkとiの式で表すと $\lim_{n \to \infty} p(n, k, i) =\boxed{\ \ ア\ \ }$
となる。また$n>3$のとき $p(n, 3, 1) = \boxed{\ \ イ\ \ }$である。
以下、$n>k=3$として、袋Aに赤玉が1個、袋Bに赤玉が2個入っている状態を
状態Sと呼ぶ。また袋A, Bのそれぞれから同時に玉を1個ずつ無作為に取り出し
て、玉が入っていた袋と逆の袋に入れる操作を操作Tと呼ぶ。
(2) 状態 Sから始めて操作を1回行った後で袋Aから玉を1個無作為に取り出す
とき、取り出した玉が赤玉である確率は$\boxed{\ \ ウ\ \ }$である。また、取り出した玉が赤玉
だったとき、操作 T終了後に袋Aに赤玉が2個入っていた条件つき確率は$\boxed{\ \ エ\ \ }$
である。
(3)状態Sから始めて操作Tを3回繰り返し行った後に、袋Aに赤玉が3個入っている
確率は$\boxed{\ \ オ\ \ }$である。
(4)状態Sから初めて袋A,Bのそれぞれから同時に玉を3個ずつ無作為に取り出して、
それらを玉が入っていた袋と逆の袋に入れた後に、袋Aに赤玉が3個入っている
確率は$\boxed{\ \ カ\ \ }$である。

2022慶應義塾大学医学部過去問
この動画を見る 

なぜ、0!=1  0の階乗がなぜ1?

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
なぜ、0!=1 
0の階乗がなぜ1なのか解説していきます.
この動画を見る 

マークシート適当で満点の確率は?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
四択問題適当にマークして満点とれる確率
この動画を見る 

福田のわかった数学〜高校1年生079〜場合の数(18)連続しない自然数の選び方

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(18) 連続しない整数
$1,2,3,\ldots,19,20$の20個の数字から、どの2つも連続しないような8個の数字を
選ぶ方法は何通りあるか。
この動画を見る 

福田の数学〜上智大学2024理工学部第1問(3)〜回路に電流が流れて電球が点灯する確率の最大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の図で表される回路は、$\rm AP$間、$\rm AQ$間、$\rm PB$間、$\rm QB$間がつながっておらず、それぞれの区間を1本の導線でつなぐことができる。$\rm P$または$\rm Q$を経由して$\rm AB$間がつながり電流が流れると電球が点灯する。導線にはタイプαが2本、タイプβが2本ある。それぞれの導線に電流が流れる確率はタイプαが$\dfrac23$、タイプβが$\dfrac12$である。
(i) $\rm AP$間、$\rm PB$間を2本のタイプαの導線でそれぞれつなぐとき、$\rm L$が点灯する確率は?
(ii) $\rm AP$間、$\rm AQ$間、$\rm PB$間、$\rm QB$間でそれぞれつなぐすべてのパターンを考える。$\rm L$が点灯する確率が最も大きくなるときの確率は?
(iii) $\rm PQ$間を確実に電流が流れる別の導線でつなぎ、$\rm AP$間、$\rm AQ$間、$\rm PB$間、$\rm QB$間を4本の導線でそれぞれつなぐすべてのパターンを考える。$\rm L$が点灯する確率が最も大きくなるときの確率は?
この動画を見る 
PAGE TOP