福田の数学〜早稲田大学2024年人間科学部第1問(2)〜不等式の表す領域の面積 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2024年人間科学部第1問(2)〜不等式の表す領域の面積

問題文全文(内容文):
$\Large\boxed{1}$ (2)次の連立不等式で表される領域の面積は$\boxed{イ}$+$\boxed{ウ}\pi$ である。
$\left\{\begin{array}{1}
x^2+y^2≦4|x|+4|y|\\
x^2≦y^2\\
\end{array}\right.$
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)次の連立不等式で表される領域の面積は$\boxed{イ}$+$\boxed{ウ}\pi$ である。
$\left\{\begin{array}{1}
x^2+y^2≦4|x|+4|y|\\
x^2≦y^2\\
\end{array}\right.$
投稿日:2024.05.01

<関連動画>

福田の数学〜三角形の面積をxで表したいが〜慶應義塾大学2023年商学部第1問(3)〜三角比の図形への応用

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
( 3 ) I 辺の長さが 2 の正四面体 ABCD において、辺 BD の中点を M 、辺 CD の中点を N とする。また、辺 AD 上に点 L を定め、 DL =xとする。このとき、$\triangle LMN$の面積が$\triangle ABC$の面積の$dfrac{1}{3}$になるのは$x=\dfrac{\fbox{ケ}}{\fbox{コ}}+\dfrac{\sqrt{\fbox{サシ}}}{ス}$のときである。

2023慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第2問(2)〜漸化式と和に関する不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}$(2)$a_1=4,\ \ \ 4a_{n+1}=2a_n+3(n=1,2,3,\ldots)$で与えられる
数列$\left\{a_n\right\}$の一般項は$a_n=\boxed{\ \ ア\ \ }$である。
また$\sum_{n=1}^la_n \geqq 20$
を満たす最小の自然数lは$\boxed{\ \ イ\ \ }$である。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

スイカに塩  小数と2次方程式  関西大学第一(改)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$x^2 - 0.001 = 0$
関西大学第一高等学校
この動画を見る 

福田の数学〜虚数係数の2次方程式の解き方〜明治大学2023年全学部統一ⅠⅡAB第1問(2)〜

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(2)$k$を実数とする。$x$についての方程式
$x^2$-(4-3$i$)$x$+(4-$ki$)=0
を満たす実数$x$があるとき、$k$=$\boxed{\ \ キ\ \ }$である。このとき、上の等式を満たす$x$の値は2つあり、$\boxed{\ \ ク\ \ }$と$\boxed{\ \ ケ\ \ }$-$\boxed{\ \ コ\ \ }$$i$ である。ただし、$i$を虚数単位とする。
この動画を見る 

福田の数学〜大阪大学2023年文系第1問〜三角方程式と解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#三角関数#円と方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。θについての方程式

$\cos 2θ =a\sin θ +b$

が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ

2023大阪大学文系過去問
この動画を見る 
PAGE TOP