福田のおもしろ数学163〜連続する奇数が互いに素である証明 - 質問解決D.B.(データベース)

福田のおもしろ数学163〜連続する奇数が互いに素である証明

問題文全文(内容文):
$n$が自然数であるとき、$2n-1$と$2n+1$が互いに素であることを示してください。
単元: #数A#整数の性質#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$n$が自然数であるとき、$2n-1$と$2n+1$が互いに素であることを示してください。
投稿日:2024.06.13

<関連動画>

連続k個の自然数の積はk!の倍数&整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は奇数
$n^5+2n^3-3n$は96の倍数であることを証明せよ

連続$k$個の自然数の積は$k!$の倍数である
この動画を見る 

福田の数学〜慶應義塾大学2024環境情報学部第5問〜リーグ戦の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1) 6つの大学による野球の総当たり戦を考える。総当たり戦では、どの2つの大学も1試合ずつ対戦し、試合ごとに引き分けなしで勝敗が決定する。いま、 各大学の実力は拮抗していて、勝敗の確率は$\frac{1}{2}$ずつとする。 このとき、全勝する大学が存在する確率は$\frac{\fbox{アイ}}{\fbox{ウエ}}$ 、全勝する大学と全敗する大学が両方存在する確率は$\frac{\fbox{オカキ}}{\fbox{クケコ}}$ 、どの大学も1試合は勝って1試合は負ける確率は$\frac{\fbox{サシス}}{\fbox{セソタ}}$である。

(2) 4つの大学による野球の総当たり戦を考える。総当たり戦では、どの2つの大学も1試合ずつ対戦し、試合ごとに引き分けなしで勝敗が決定する。いま、4つの大学のうちK大学の実力が他の3つの大学よりもまさっていて、K大学が他の大学に勝つ確率は$\frac{3}{4}$負ける確率は$\frac{1}{4}$とする。一方で、K大学以外の3つの大学の2 実力は拮抗していて、これらの大学同士の勝敗の確率は$\frac{1}{2}$ずつとする。このとき、全勝する大学が存在する確率はする確率は、$\frac{\fbox{チツ}}{\fbox{テト}}$、全勝する大学と全敗する大学が両方存在する確率は$\frac{\fbox{ナニ}}{\fbox{ヌネ}}$、どの大学も1試合は勝って1試合は負ける確率は$\frac{\fbox{ノハ}}{\fbox{ヒフ}}$である。
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第5問〜平面幾何

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
$\triangle ABC$において、$AB=3$, $BC=4$, $AC=5$とする。
$\angle BAC$の二等分線と辺$BC$との交点を$D$とすると
$BD=\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$, $AD=\displaystyle \frac{\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}}{\boxed{\ \ オ\ \ }}$
である。
また、$\angle BAC$の二等分線と$\triangle ABC$の外接円$O$との交点で点$A$とは異なる
点を$E$とする。$\triangle AEC$に着目すると
$AE=\boxed{\ \ カ\ \ }\sqrt{\boxed{\ \ キ\ \ }}$
である。
$\triangle ABC$の2辺$AB$と$AC$の両方に接し、外接円$O$に内接する円の中心を
$P$とする。円$P$の半径を$r$とする。さらに、円$P$と外接円$O$との接点を
$F$とし、直線$PF$と外接円$O$との交点で点$F$とは異なる点を$G$とする。
このとき
$AP=\sqrt{\boxed{\ \ ク\ \ }}\ r$, $PG=\boxed{\ \ ケ\ \ }-r$
と表せる。したがって、方べきの定理により$r=\displaystyle \frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$である。

$\triangle ABC$の内心を$Q$とする。内接円$Q$の半径は$\boxed{\ \ シ\ \ }$で、$AQ=\sqrt{\boxed{\ \ ス\ \ }}$
である。また、円$P$と辺$AB$との接点を$H$とすると、$AH=\displaystyle \frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}$である。
以上から、点$H$に関する次の$(\textrm{a}),(\textrm{b})$の正誤の組合せとして正しいもの
は$\boxed{\boxed{\ \ タ\ \ }}$である。


$(\textrm{a})$点$H$は3点$B,D,Q$を通る円の周上にある。
$(\textrm{b})$点$H$は3点$B,E,Q$を通る円の周上にある。

$\boxed{\boxed{\ \ タ\ \ }}$の解答群
(※選択肢は動画参照)

2021共通テスト過去問
この動画を見る 

千葉大(医)の類題 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$(n,k)$をすべて求めよ.
$11^n=k^2+12960$

千葉大(医)過去問
この動画を見る 

ただの方程式ではないよ

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{x-6}{2020} + \frac{x-5}{2021} + \frac{x-4}{2022} = 3$
この動画を見る 
PAGE TOP