福田のおもしろ数学056〜折り返し問題〜半円を折り返す - 質問解決D.B.(データベース)

福田のおもしろ数学056〜折り返し問題〜半円を折り返す

問題文全文(内容文):
図は半円 O を点 C で接するように折り返したもので EF はその折り目である。EF と AB の交点を D とする。 $AC = 6 , BC = 2$ のとき、 AD の長さを求めよ。
※図は動画内参照
単元: #数A#数Ⅱ#図形の性質#方べきの定理と2つの円の関係#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
図は半円 O を点 C で接するように折り返したもので EF はその折り目である。EF と AB の交点を D とする。 $AC = 6 , BC = 2$ のとき、 AD の長さを求めよ。
※図は動画内参照
投稿日:2024.02.19

<関連動画>

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 7^{n+1}$が19で割り切れるならnは平方数でないことを示せ.
この動画を見る 

引けるか!?補助線

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
次の角度を求めよ(図は動画参照)
$\angle x+\angle y=$
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題5。平面幾何の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第5問 $\triangle ABC$の重心をGとし、線分AG上で点Aとは異なる位置に点Dをとる。
直線AGと辺BCの交点をEとする。また、直線BC上で辺BC上にはない位置に点Fをとる。
直線DFと辺ABの交点をP、直線DFと辺ACの交点をQとする。
(1)点Dは線分AGの中点であるとする。
このとき、$\triangle ABC$の形状に関係なく$\frac{AD}{DE}=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$
である。また、点Fの位置に関係なく$\frac{BP}{AP}=\boxed{\ \ ウ\ \ }×\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }},$
$\frac{CQ}{AQ}=\boxed{\ \ カ\ \ }×\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$であるので、常に$\frac{BP}{AP}+\frac{CQ}{AQ}=\boxed{\ \ ケ\ \ }$

$\boxed{\ \ エ\ \ }~\boxed{\ \ ケ\ \ }$の解答群
⓪BC ①BF ②CF ③EF ④FP ⑤FQ ⑥PQ

(2)$AB=9, BC=8, AC=6$とし、(1)と同様に、点Dは線分AGの中点であるとする。
ここで、4点B,C,Q,Pが同一円周上にあるように点Fをとる。このとき、

$AQ=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ AP$であるから
$AP=\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}, AQ=\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チ\ \ }}$であり、
$CF=\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }}$である。

(3)$\triangle ABC$の形状や点Fの位置に関係なく、常に$\frac{BP}{AP}+\frac{CQ}{AQ}=10$となるのは
$\frac{AD}{DG}=\frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}$のときである。

2022共通テスト数学過去問
この動画を見る 

気付けば一瞬!!!!2つのおうぎ形

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AB=5
斜線部の面積=?

*図は動画内参照
この動画を見る 

コインを投げる 確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
○×問題  コインを投げる
(1)2枚投げた時、表1枚裏1枚になる確率は$\frac{1}{2}$
(2)4枚投げた時、表2枚裏2枚になる確率は$\frac{1}{2}$
この動画を見る 
PAGE TOP