09和歌山県教員採用試験(数学:2番 数列) - 質問解決D.B.(データベース)

09和歌山県教員採用試験(数学:2番 数列)

問題文全文(内容文):
$\boxed{2}$
$a_1=1,a_{n+1}=\dfrac{a_n}{4a_n+3}$
一般項$a_n$を求めよ.
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
$a_1=1,a_{n+1}=\dfrac{a_n}{4a_n+3}$
一般項$a_n$を求めよ.
投稿日:2021.07.20

<関連動画>

数列の和の公式の利用

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\displaystyle \sum_{k=1}^n (-1)^{k+1}k^2$
$1^2-2^2+3^2-4^2+5^2-6^2・・・・・・$
この動画を見る 

【短時間でマスター!!】漸化式を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
数学2B
$a_1=1,a_{n+1}=2a_n+1$
$\{a_n\}$の一般項
この動画を見る 

福田の数学〜東京大学2025理系第5問〜バブルソートが題材となった数が整列する条件を漸化式にする

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$n$を$2$以上の整数とする。

$1$から$n$までの数字が書かれた札が各$1$枚ずつ合計$n$枚あり、

横一列におかれている。

$1$以上$(n-1)$以下の整数$i$に対して、

次の操作$(T_i)$を考える。

$(T_i)$左から$i$番目の札の数字が、

左から$(i+1)$番目の札の数字よりも大きければ、

これら$2$枚の札の位置を入れ替える。

そうでなければ、札の位置を変えない。

最初の状態において札の数字は左から

$A_1,A_2,\cdots A_n$であったとする。

この状態から$(n-1)$回の操作$(T_1),(T_2),\cdots (T_{n-1})$を

順に行った後、続けて$(n-1)$回の操作

$(T_{n-1}),\cdots ,(T_2),(T_1)$を順に行ったところ、

札の数字は左から$1,2,\cdots ,n$と小さい順に並んだ。

以下の問いに答えよ。

(1)$A_1$と$A_2$の少なくとも一方は$2$以下であることを示せ。

(2)最初の状態としてありうる札の数字の並び方

$A_1,A_2,\cdots 、A_n$no総数を$c_n$とする。

$n$が$4$以上の整数であるとき、

$c_n$を$c_{n-1}$と$c_{n-2}$を用いて表せ。

$2025$年東京大学理系過去問題
この動画を見る 

福田のわかった数学〜高校3年生理系076〜平均値の定理(4)数列の極限の問題

アイキャッチ画像
単元: #数列#漸化式#関数と極限#微分とその応用#数列の極限#接線と法線・平均値の定理#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$平均値の定理(4)
微分可能な関数$f(x)$が$f(1)=1, 0 \lt f'(x) \leqq \frac{1}{2}$を満たしている。
$a_{n+1}=f(a_n)$で定義される数列$\left\{a_n\right\}$について、
$\lim_{n \to \infty}a_n=1$であることを示せ。
この動画を見る 

近畿大 展開 係数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x+1)(x+3)(x+5)$
$x(x+7)(x+9)(x+11)$

(1)
$x^7$の係数

(2)
$x^6$の係数

出典:2012年近畿大学 過去問
この動画を見る 
PAGE TOP