大学入試問題#692「定積分の王道」 産業医科大学(2012) 定積分 - 質問解決D.B.(データベース)

大学入試問題#692「定積分の王道」 産業医科大学(2012) 定積分

問題文全文(内容文):
$\displaystyle \int_{3}^{4} \displaystyle \frac{6x+5}{x^3-3x-2} dx$

出典:2012年産業医科大学 入試問題
チャプター:

00:00 問題紹介
08:53 作成した解答①
09:04 作成した解答②

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{3}^{4} \displaystyle \frac{6x+5}{x^3-3x-2} dx$

出典:2012年産業医科大学 入試問題
投稿日:2024.01.02

<関連動画>

大学入試問題#229 大阪府立大学(2020) #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$m,n$:整数
$0 \leqq n \leqq m$
$3m^2+mn-2n^2$が素数となるような組$(m,n)$を全て求めよ。

出典:2020年大阪府立大学 入試問題
この動画を見る 

東北大 分数型漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#東北大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2008東北大学過去問題
$a_1=2 \quad a_{n+1}=\frac{4a_n+1}{2a_n+3}$
(1)$b_n = \frac{a_n+β}{a_n+α}$として$\{ b_n \}$が等比数列となるようなα,β(α>β)を1組求めよ。
(2)$\{ a_n \}$の一般項$a_n$を求めよ。
この動画を見る 

慈恵医大 複素数の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
(1)$\alpha^7,\displaystyle \sum_{k=0}^6 {\alpha}_{k}$の値を求めよ.

(2)$\beta=\alpha^3+\alpha^5+\alpha^6$とするとき,$\beta+\bar{\beta},\beta\bar{\beta}$の値を求めよ.

(3)$\beta=a+bi,b$の正負を判定し$a,b$の値を求めよ.

慈恵医大過去問
この動画を見る 

福田の数学〜円と直線が共有点をもつ条件は〜慶應義塾大学2023年商学部第1問(2)〜円と直線の位置関係

単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)xy平面上において、点(4,3)を中心とする半径1の円とちょくせん$y=mx$が共有点を持つとき、
定数mの取り得る最大値は$\dfrac{\fbox{ウ}}{\fbox{エ}}+\dfrac{\fbox{オ}\sqrt{\fbox{カ}}}{\fbox{キク}}$である。

2023慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜早稲田大学2024商学部第3問〜空間の中の2つの三角形の面積の和の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
3 座標空間において、4点をA(0, 0, 2), B(-1, 0, 4), C(1, 1, 0), D(0, 0, 1) とする。次の問いに答えよ。
(1) Pを直線AB上の点とするとき、三角形PCDの面積の最小値を求めよ。
(2) Q,Rを直線 CD上のとし、QR = √3とする。三角形QABの面積と三角形 RAB の面積の和の最小値を求めよ。
この動画を見る 
PAGE TOP