sin sin sin sin sin sin sin sin sin sin sin sin - 質問解決D.B.(データベース)

sin sin sin sin sin sin sin sin sin sin sin sin

問題文全文(内容文):
$
\displaystyle \lim_{ θ \to 0 } \frac{sin(sin(sin θ))}{θ}
$
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$
\displaystyle \lim_{ θ \to 0 } \frac{sin(sin(sin θ))}{θ}
$
投稿日:2022.01.28

<関連動画>

図形と計量 多角形【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
半径10の円に内接する正n角形の1辺の長さを求めよ。また,円の中心から正n角形の1辺に下ろした垂線の長さを求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024年薬学部第1問(4)〜空間図形の計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)Oを原点とする$xyz$空間に点A(0,0,$\sqrt 6$)があり、$y$軸上の点B, C($t$,$\frac{t}{\tan\theta}$,0)を∠OBA=30°,∠BAC=45°,∠ACB=60° を満たすようにおく。ただし$t$は$t$>0 を満たす実数の定数、$\theta$は0°<$\theta$<90°を満たす実数の定数とする。
(i)$|\overrightarrow{BC}|$=$\boxed{\ \ ケ\ \ }$である。
(ii)$|\overrightarrow{OC}|^2$=$\boxed{\ \ コ\ \ }$である。
(iii)$\theta$は$\tan^2\theta$の値が$\boxed{\ \ サ\ \ }$となる実数である。
この動画を見る 

福田のわかった数学〜高校1年生053〜図形の計量(4)三角形の成立条件と最大角

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 図形の計量(4)
三辺の長さが$x^2+x+1, -2x-1, x^2+2x$である三角形の最大角を求めよ。
この動画を見る 

【高校数学】数Ⅰ-8 因数分解①(基本編)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎因数分解しよう。
①$3ax^2-12a^2x$
②$x(x-5)+3(x-5)$
③$9x^2+12xy+4y^2$
④$50x^2-2y^2$
⑤$6a^3-54ab^2$
⑥$2x^2+14x+24$
⑦$x^2-(y-z)^2$
⑧$(x-y)^2+2(x-y)-24$
この動画を見る 

産業医科大 三角比の計算

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#産業医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{2}{7}\pi+\cos\dfrac{4}{7}\pi+\cos\dfrac{8}{7}\pi=?$

$\sin\dfrac{2}{7}\pi+\sin\dfrac{4}{7}\pi+\sin\dfrac{8}{7}\pi=?$

これらを求めよ。

産業医科大過去問
この動画を見る 
PAGE TOP