福田の数学〜名古屋大学2023年文系第3問〜復元抽出と非復元抽出での確率 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2023年文系第3問〜復元抽出と非復元抽出での確率

問題文全文(内容文):
$\Large\boxed{3}$ 数字1が書かれた球が2個、数字2が書かれた球が2個、数字3が書かれた球が2個、数字4が書かれた球が2個、合わせて8個の球が袋に入っている。カードを8枚用意し、次の試行を8回行う。
袋から球を1個取り出し、数字kが書かれていたとき、
・残っているカードの枚数がk以上の場合、カードを1枚取り除く。
・残っているカードの枚数がk未満の場合、カードは取り除かない。
(1)取り出した球を毎回袋の中に戻すとき、8回の試行のあとでカードが1枚だけ残っている確率を求めよ。
(2)取り出した球を袋の中に戻さないとき、8回の試行の後でカードが残っていない確率を求めよ。

2023名古屋大学文系過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 数字1が書かれた球が2個、数字2が書かれた球が2個、数字3が書かれた球が2個、数字4が書かれた球が2個、合わせて8個の球が袋に入っている。カードを8枚用意し、次の試行を8回行う。
袋から球を1個取り出し、数字kが書かれていたとき、
・残っているカードの枚数がk以上の場合、カードを1枚取り除く。
・残っているカードの枚数がk未満の場合、カードは取り除かない。
(1)取り出した球を毎回袋の中に戻すとき、8回の試行のあとでカードが1枚だけ残っている確率を求めよ。
(2)取り出した球を袋の中に戻さないとき、8回の試行の後でカードが残っていない確率を求めよ。

2023名古屋大学文系過去問
投稿日:2023.06.06

<関連動画>

【高校数学】  数A-12  順列⑥ ・ じゅず順列編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①8クラスの学級委員長が、円形の机に座るとき、直積の方法は何通り?

②先生1人、男子2人、女子3人が円形のテーブルに座るとき、男子2人が隣り合う座り方は何通り?

③色の異なる5個の玉を糸でつないで首飾りをつくる方法は何通り?
この動画を見る 

福田の数学〜東北大学2024年理系第3問〜確率漸化式と複素数平面の融合

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $n$ を2以上の整数とする。それぞれ $A$, $A$, $B$ と書かれた $3$ 枚のカードから無作為に $1$ 枚抜き出し、カードをもとに戻す試行を考える。この試行を $n$ 回繰り返し、抜き出したカードの文字を順に左から右に並べ、$n$ 文字の文字列を作る。作った文字列内に $AAA$ の並びがある場合は 不可 とする。また、作った文字列内に $BB$ の並びがある場合も 不可 とする。これらの場合以外は 可 とする。

例えば $n = 6$ のとき、文字列 $AAAABA$ や $ABBBAA$ や $ABBABB$ や $BBBAAA$ などは 不可 で、文字列 $BABAAB$ や $BABABA$ などは 可 である。
作った文字列が 可 でかつ右端の $2$ 文字が $AA$ である確率を $p_n$、作った文字列が 可 でかつ右端の $2$ 文字が $BA$ である確率を $q_n$、作った文字列が 可 でかつ右端の文字が $B$ である確率を $r_n$ とそれぞれおく。

(1) $p_2$, $q_2$, $r_2$ をそれぞれ求めよ。また、$p_{n+1}$, $q_{n+1}$, $r_{n+1}$ を $p_n$, $q_n$, $r_n$ を用いてそれぞれ表せ。
(2)$p_n$+$2q_n$+$2r_n$を$n$を用いて表せ。
(3)$p_n$+$iq_n$-$(1+i)r_n$を$n$を用いて表せ。ただし、$i$は虚数単位である。
(4)$p_n$=$r_n$ を満たすための、$n$の必要十分条件を求めよ。
この動画を見る 

福田の数学〜一橋大学2022年文系第5問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
中身の見えない2つの箱があり、1つの箱には赤玉2つと白玉1つが入っており、
もう1つの箱には赤玉1つと白玉2つが入っている。どちらかの箱を選び、選んだ
箱の中から玉を1つ取り出して元に戻す、という操作を繰り返す。
(1) 1回目は箱を無作為に選び、2回目以降は、前回取り出した玉が赤玉なら前回
と同じ箱、前回取り出した玉が白玉なら前回とは異なる箱を選ぶ。n回目に赤玉
を取り出す確率$p_n$を求めよ。
(2)1回目は箱を無作為に選び、2回目以降は、前回取り出した玉が赤玉なら前回
と同じ箱、前回取り出した玉が白玉なら箱を無作為に選ぶ。n回目に赤玉を取り
出す確率 $q_n$を求めよ。

2022一橋大学文系過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第1問(3)〜部屋わけ・グループ分けの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)3つの部屋A,B,Cがある。この3つの部屋に対して、複数の生徒が以下の
試行(*)を繰り返し行うことを考える。
$(*)\left\{
\begin{array}{1}
・生徒それぞれが部屋を無作為に1つ選んで入る。\\
・生徒全員が部屋に入ったら、各部屋の生徒の人数を確認する。\\
・生徒全員が部屋を出る。\\
・1人の生徒しかいない部屋があった場合、その部屋に入った生徒は\\
次回以降の試行に参加しない。\\
\end{array}
\right.$

$(\textrm{i})$4人の生徒が試行(*)を1回行ったとき、2回目の試行に参加する生徒が
3人になる確率は$\boxed{\ \ オ\ \ }$である。
$(\textrm{ii})$5人の生徒が試行(*)を続けて2回行ったとき、3回目の試行に参加する
生徒が2人になる確率は$\boxed{\ \ カ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第1問(2)〜領域に属する確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1個のさいころを投げる試行を2回繰り返し、
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線
$l:\frac{x}{a}+\frac{y}{b}=1$
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、
三角形OPQの周および内部をD、三角形OPQの面積をSとする。

(2)点(2,\ 4)がDに含まれる確率は
$\frac{\boxed{キ}}{\boxed{ク}}$
点(2,\ 3)がDに含まれる確率は$\frac{\boxed{ケ}}{\boxed{コ}}$である。

2022上智大学文系過去問
この動画を見る 
PAGE TOP