数検準1級1次過去問(3番 ベクトル) - 質問解決D.B.(データベース)

数検準1級1次過去問(3番 ベクトル)

問題文全文(内容文):
3⃣
$|\vec{ a }|=\sqrt{10}$ , $|\vec{ b }|=\sqrt{5}$ , $\vec{ a }・\vec{ b } = -\sqrt{2}$
$ \vec{ a }⊥(\vec{ a }+t\vec{ b })$
のとき$|\vec{ a }+t\vec{ b }|$を求めよ。
単元: #数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#平面上のベクトルと内積#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
3⃣
$|\vec{ a }|=\sqrt{10}$ , $|\vec{ b }|=\sqrt{5}$ , $\vec{ a }・\vec{ b } = -\sqrt{2}$
$ \vec{ a }⊥(\vec{ a }+t\vec{ b })$
のとき$|\vec{ a }+t\vec{ b }|$を求めよ。
投稿日:2020.11.30

<関連動画>

【高校数学】 数B-5 ベクトルの式の計算②

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の等式を満たす$\vec{ x },$を$\vec{ a },\vec{ b }$を用いて表そう。

①$\begin{eqnarray}
\left\{
\begin{array}{l}
2\vec{ x } + \vec{ y } = \vec{ a } \\
\vec{ x } + \vec{ y } = \vec{ b }
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
2\vec{ x } + 3\vec{ y } = \vec{ a } + \vec{ b }\\
\vec{ x } - \vec{ y } = \vec{ a }-\vec{ b }
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【数学B/平面ベクトル】ベクトルの内積(公式と使い方)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
2つのベクトル$\vec{ a },\vec{ b }$について、$\vec{ a }$と$\vec{ b }$の内積を求めよ。
(1)$|\vec{ a }|=2,|\vec{ b }|=3,\theta=45^{ \circ }$
(2)$|\vec{ a }|=1,|\vec{ b }|=4,\theta=150^{ \circ }$
この動画を見る 

19京都府教員採用試験(数学:高4番 ベクトル・三角関数)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
4⃣$OA=2\sqrt2,OB=4,cos\angle AOB=\frac{\sqrt2}{4}$の△OABにおいて
|$(cost+sint)\overrightarrow{ OA }+(cost-sint)\overrightarrow{ OB }$|
の最大値とそのときのtの値を求めよ。
$(0 \leqq t \leqq \frac{\pi}{4})$
この動画を見る 

【高校数学】 数B-55 空間における平面・直線の方程式③

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#点と直線#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①直線$\ell:x=-1+t,y=3+t,z=1+2t$上に点$P$がある.
線分$OP$が最小となる点$P$の座標を求めよう.

②2点$A(3,1,4),B(1,2,-1)$を通る直線上に点のうちで,
原点に最も近い点の座標を求めよう.
この動画を見る 

【数B】平面ベクトル:A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(4,3) B(8,5) C(5,8)のとき△ABCの面積Sを求めよう。
この動画を見る 
PAGE TOP