数学「大学入試良問集」【19−11 面積の極限とネイピア数】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【19−11 面積の極限とネイピア数】を宇宙一わかりやすく

問題文全文(内容文):
曲線$C:y=\displaystyle \frac{1}{x}(x \gt 0)$を考える。
また、$n=1,2,3,・・・$と正の実数$t$に対し、曲線$C_n:y=-\displaystyle \frac{n}{x}+t(x \gt 0)$を考える。
次の各問いに答えよ。

(1)
$C$と$C_n$が1点$P(a,b)$で交わり、$P$における$C$と$C_n$の接線が直行するとき、$a$と$t$を$n$を用いて表せ。

(2)
(1)のとき、曲線$C_n$と$P$における$C$の接線、および$x$軸とで囲まれる図形の面積$S_n$を求めよ。

(3)
$\displaystyle \lim_{ n \to \infty }S_n$を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#京都産業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
曲線$C:y=\displaystyle \frac{1}{x}(x \gt 0)$を考える。
また、$n=1,2,3,・・・$と正の実数$t$に対し、曲線$C_n:y=-\displaystyle \frac{n}{x}+t(x \gt 0)$を考える。
次の各問いに答えよ。

(1)
$C$と$C_n$が1点$P(a,b)$で交わり、$P$における$C$と$C_n$の接線が直行するとき、$a$と$t$を$n$を用いて表せ。

(2)
(1)のとき、曲線$C_n$と$P$における$C$の接線、および$x$軸とで囲まれる図形の面積$S_n$を求めよ。

(3)
$\displaystyle \lim_{ n \to \infty }S_n$を求めよ。
投稿日:2021.09.11

<関連動画>

【高校数学】名古屋大学2024年の手強い積分の問題をその場で解説しながら解いてみた!毎日積分82日目~47都道府県制覇への道~【㉕愛知】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【名古屋大学 2024】
袋の中にいくつかの赤玉と白玉が入っている。すべての玉に対する赤玉の割合を$p(0≦p≦1)$とする。袋から無作為に玉を一つ取り出して袋に戻す試行を行う。試行を$n$回行うとき、赤玉を$k$回以上取り出す確率を$f(k)$をおく。
(1) $n≧2$に対して、$f(1), f(2)$を求めよ。
(2) $k=1,2, ・・・・・・,n$に対して、等式
$\displaystyle f(k)=\frac{n!}{(k-1)!(n-k)!}\int_0^px^{k-1}(1-x)^{n-k}dx$
を示せ。
(3) 自然数$k$に対して、定積分
$\displaystyle I=\int_0^{\frac{1}{2}}x^k(1-x)^k dx$
を求めよ。
この動画を見る 

大学入試問題#92 東京医科大学(2015) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}(x\sqrt{ 1-x^2 })^3 dx$を計算せよ。

出典:2015年東京医科大学 入試問題
この動画を見る 

大学入試問題#202 横浜国立大学 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\displaystyle \frac{\cos\ x}{\sin\ x})^4dx$

出典:横浜国立大学 入試問題
この動画を見る 

大学入試問題#635「意外と簡単」 公立諏訪東京理科大学 #不定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\displaystyle \int e^x\{f'(x)+f(x)\} dx$

(2)$\displaystyle \int e^x \displaystyle \frac{1+\sin\ x}{1+\cos\ x}\ dx$

出典:2023年公立諏訪東京理科大学 入試問題
この動画を見る 

大学入試問題#562「証明問題じゃなきゃ解けるのか?」 東京帝国大学1937 #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$:正の整数

$\displaystyle \int_{0}^{\pi} \displaystyle \frac{\sin(2n-1)x}{\sin\ x}\ dx=\pi$を示せ

出典:1937年東京帝国大学 入試問題
この動画を見る 
PAGE TOP