【数学】2次方程式:二次方程式の活用 みんなが嫌いな動く点Pを得意に! - 質問解決D.B.(データベース)

【数学】2次方程式:二次方程式の活用 みんなが嫌いな動く点Pを得意に!

問題文全文(内容文):
2次方程式:二次方程式の活用をしてみた.
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次方程式:二次方程式の活用をしてみた.
投稿日:2022.10.13

<関連動画>

例の解法

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,c,dは自然数であり,$a \gt b \gt c \gt d$である.
$ad+bc=22,ac-bd=7$
これを解け.
この動画を見る 

福田のわかった数学〜高校3年生理系104〜絶対不等式(2)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 絶対不等式(2)
$\sqrt x+\sqrt y \leqq k\sqrt{2x+y}$
が任意の正の実数x,yに対して成り立つような実数$k$
の値の範囲を求めよ。
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x+y=99$のとき
$(x-33)^{2023} + (y-66)^{2023}=?$
この動画を見る 

【手元動画】数学IA 図形と計量の攻略法

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$\triangle ABC$において、$BC=2\sqrt{ 2 }$とする。
$\angle ACB$の二等分線と辺$AB$の交点を$D$とし、$CD=\sqrt{ 2 }, \cos \angle BCD=\displaystyle \frac{3}{4}$とする。
このとき、$BD=$[ア]であり$\sin \angle ADC=\displaystyle \frac{[イウ]}{[エ]}$である。
$\displaystyle \frac{AC}{AD}=\sqrt{ オ }$であるから$AD=[カ]$である。
$\triangle ABC$の外接円の半径は$\displaystyle \frac{キ\sqrt{ ク }}{ケ}$である
この動画を見る 

【数Ⅰ】【図形と計量】三角比の相互関係式の使い方2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sin\theta-\cos\theta$を$\sin\theta$だけを用いた式で表せ。また,$\cos\theta$だけを用いた式で表せ。
この動画を見る 
PAGE TOP