お茶の水女子大 2次方程式 訂正版 - 質問解決D.B.(データベース)

お茶の水女子大 2次方程式 訂正版

問題文全文(内容文):
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ

出典:1988年お茶の水女子大学 過去問訂正版
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ

出典:1988年お茶の水女子大学 過去問訂正版
投稿日:2019.07.12

<関連動画>

【数A】【数と式】(1) (x-1)(x-3)(x-5)(x-7)+15 (2) (x+1)(x-2)(x+3)(x-6)+8x²

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) $(x-1)(x-3)(x-5)(x-7)+15$
(2) $(x+1)(x-2)(x+3)(x-6)+8x^2$
この動画を見る 

【初見では固まる…!】平方根:慶応義塾高等学校~全国入試問題解法

単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$次の式を計算せよ。$
$\dfrac{1}{(1+\sqrt{2}+\sqrt{3})^2}+\dfrac{1}{(1+\sqrt{2}-\sqrt{3})^2}$
この動画を見る 

【高校数学】余弦定理の応用~問題演習~ 3-7.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

07三重県教員採用試験(数学:10番 不等式)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{10}$
$x\gt 0$である.
$e^{x-2} \geqq ax^2$が成り立つ$a$の値の
最大値を求めよ.
この動画を見る 

【高校数学】数Ⅰ-42 2次関数の最大・最小 ①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2次関数に最大値、最小値があれば、それを求めよう。
①$y=x^2-4x+5(-1 \leqq x \leqq 3)$
②$y=-2x^2-4x+1(0 \leqq x \leqq 2)$
③$y=2x^2-3x+4(-1 \leqq x \leqq 2)$
④$y=x^2+6x-5$
この動画を見る 
PAGE TOP