大学入試問題#638「よくある形」 名古屋市立大学(2021) #数列 #級数 - 質問解決D.B.(データベース)

大学入試問題#638「よくある形」 名古屋市立大学(2021) #数列 #級数

問題文全文(内容文):
数列$\{a_n\}$が
$a_1=2,\ \displaystyle \frac{a_{n+1}}{a_n}=\displaystyle \frac{n}{n+2}$を満たすとき
$\displaystyle \sum_{k=1}^\infty a_k$を求めよ

出典:2021年名古屋市立大学 入試問題
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#名古屋市立大学
指導講師: ますただ
問題文全文(内容文):
数列$\{a_n\}$が
$a_1=2,\ \displaystyle \frac{a_{n+1}}{a_n}=\displaystyle \frac{n}{n+2}$を満たすとき
$\displaystyle \sum_{k=1}^\infty a_k$を求めよ

出典:2021年名古屋市立大学 入試問題
投稿日:2023.11.03

<関連動画>

04大阪府教員採用試験(数学:1番 整数問題・数列)95東工大,07筑波大

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$2\leqq n \in IN$

1から$n$の異なる2つの積の総和を求めよ.
この動画を見る 

千葉大 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$n\geqq 2$であり,$a_n=\dfrac{(1+\sqrt3)^n+(1-\sqrt3)^n}{4}$である.
$a_n$は整数であり,$a_n$を$3$で割った余りは$2$であることを示せ.

2013千葉大過去問
この動画を見る 

シグマΣの記号について~中学生でも理解させます~

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
\begin{eqnarray}
(1)
\displaystyle \sum_{k=1}^{100} k
\end{eqnarray}
この動画を見る 

階乗に関する問題!!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{2023!}{2021!+2022!}$
この動画を見る 

福田の数学〜立教大学2023年経済学部第2問〜利息計算と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 1年目の初めに新規に100万円を預金し、2年目以降の毎年初めに12万円を追加で預金する。ただし、毎年の終わりに、その時点での預金額の8%が利子として預金に加算される。自然数$n$に対して、$n$年目の終わりに利子が加算された後の預金額を$S_n$万円とする。このとき、以下の問いに答えよ。
ただし、$\log_{10}2$=0.3010, $\log_{10}3$=0.4771とする。
(1)$S_1$, $S_2$をそれぞれ求めよ。
(2)$S_{n+1}$を$S_n$を用いて表せ。
(3)$S_n$を$n$を用いて表せ。
(4)$\log_{10}1.08$を求めよ。
(5)$S_n$>513 を満たす最小の自然数$n$を求めよ。
この動画を見る 
PAGE TOP