整数問題 - 質問解決D.B.(データベース)

整数問題

問題文全文(内容文):
nを自然数とする.
$(4n-1)^{2n+1}+(4n+1)^{2n-1}$は$32n^2$で割り切れることを示せ.
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを自然数とする.
$(4n-1)^{2n+1}+(4n+1)^{2n-1}$は$32n^2$で割り切れることを示せ.
投稿日:2023.01.18

<関連動画>

福田の数学〜早稲田大学2021年商学部第3問〜正の約数の総和が奇数になる条件

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 次の設問に答えよ。
(1)$225$の全ての正の約数の和を求めよ。
(2)$2021$以下の正の整数で、すべての正の約数の和が奇数であるものの個数を求めよ。

2021早稲田大学商学部過去問
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第1問〜2次関数、三角比

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第1問}$
[1]$c$を正の整数とする。$x$の2次方程式
$2x^2+(4c-3)x+2c^2$$-c-11=0$ $\cdots$①
について考える。

(1)$c=1$のとき、①のっ左辺を因数分解すると

$\left(\boxed{\ \ ア\ \ }\ x+\boxed{\ \ イ\ \ }\right)\left(x-\boxed{\ \ ウ\ \ }\right)$
であるから、①の解は

$x=-\displaystyle \frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ア\ \ }},\ \boxed{\ \ ウ\ \ }$

である。

(2)$c=2$のとき、①の解は

$x=\displaystyle \frac{-\boxed{\ \ エ\ \ }\pm\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キ\ \ }}$

であり、大きい方の解を$\alpha$とすると

$\displaystyle \frac{5}{\alpha}=\displaystyle \frac{\boxed{\ \ ク\ \ }\pm\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サ\ \ }}$

である。また、$m \lt \displaystyle \frac{5}{\alpha} \lt m+1$を満たす整数$m$は$\boxed{\ \ シ\ \ }$である。

(3)太郎さんと花子さんは、①の解について考察している。

太郎:①の解は$c$の値によって、ともに有理数である場合も
あれば、ともに無理数である場合もあるね。$c$がどの
ような値のときに、解は有理数になるのかな。
花子:2次方程式の解の公式の根号の中に着目すれば
いいんじゃないかな。

①の解が異なる二つの有理数であるような正の整数$c$の個数は
$\boxed{\ \ ス\ \ }$個である。

[2]右の図のように(※動画参照)、$\triangle ABC$の外側に辺$AB,BC,CA$
をそれぞれ1辺とする正方形$ADEB,BFGC,CHIA$をかき、
2点$E$と$F,G$と$H,I$と$D$をそれぞれ線分で結んだ図形を考える。
以下において
$BC=a, CA=b, AB=c$
$\angle CAB=A, \angle ABC=B, $$\angle BCA=C$
とする。

(1)$b=6,c=5,\cos A=\displaystyle \frac{3}{5}$のとき、$\sin A=\displaystyle \frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}$であり、
$\triangle ABC$の面積は$\boxed{\ \ タチ\ \ }、\triangle AID$の面積は$\boxed{\ \ ツテ\ \ }$である。


(2)正方形$BFGC, CHIA, ADEB$の面積をそれぞれ$S_1,S_2,S_3$とする。
このとき、$S_1-S_2-S_3$は
・$0° \lt A \lt 90°$のとき、$\boxed{\boxed{\ \ ト\ \ }}$。
・$A=90°$のとき、$\boxed{\boxed{\ \ ナ\ \ }}$。
・$90° \lt A \lt 180°$のとき、$\boxed{\boxed{\ \ ニ\ \ }}$。


$\boxed{\boxed{\ \ ト\ \ }}~\boxed{\boxed{\ \ ニ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$0$である
①正の値である
②負の値である
③正の値も負の値もとる

(3)$\triangle AID,\triangle BEF,\triangle CGH$の面積をそれぞれ$T_1,T_2,T_3$とする。
このとき、$\boxed{\boxed{\ \ ヌ\ \ }}$である。

$\boxed{\boxed{\ \ ヌ\ \ }}$の解答群
⓪$a \lt b \lt c$ならば、$T_1 \gt T_2 \gt T_3$
①$a \lt b \lt c$ならば、$T_1 \lt T_2 \lt T_3$
②$A$が鈍角ならば、$T_1 \lt T_2かつT_2 \lt T_3$
③$a,b,c$の値に関係なく、$T_1=T_2=T_3$

(4)$\triangle ABC,\triangle AID,\triangle BEF,\triangle CGH$のうち、外接円の半径が最も小さい
ものを求める。
$0° \lt A \lt 90°$のとき、$ID \boxed{\boxed{\ \ ネ\ \ }}BC$であり
($\triangle AID$の外接円の半径)$\boxed{\boxed{\ \ ノ\ \ }}$($\triangle ABC$の外接円の半径)

であるから、外接円の半径が最も小さい三角形は
・$0° \lt A \lt B \lt C \lt 90°$のとき、$\boxed{\boxed{\ \ ハ\ \ }}$である。
・$0° \lt A \lt B \lt 90° \lt $Cのとき、$\boxed{\boxed{\ \ ヒ\ \ }}$である。

$\boxed{\boxed{\ \ ネ\ \ }},\boxed{\boxed{\ \ ノ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\lt$ ①$=$ ②$\gt$

$\boxed{\boxed{\ \ ハ\ \ }},\boxed{\boxed{\ \ ヒ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\triangle ABC$ ①$\triangle AID$ ②$\triangle BEF$ ③$\triangle CGH$

2021共通テスト過去問
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第2問〜条件を満たすm個の2次関数の積でできる2m次方程式の異なる解の総和

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}\ p,q$を相異なる素数とする。次の3条件を満たすxの2次式f(x)を考える。
・係数はすべて整数1で$x^2$の係数は1である。
・$f(1)=pq$である。
・方程式$f(x)=0$は整数解をもつ。
以下の問いに答えよ。
(1)$f(x)$をすべて求めよ。
(2)(1)で求めたものを$f_1(x),f_2(x),\ldots,f_m(x)$とする。2m次方程式
$f_1(x)×f_2(x)×\ldots×f_m(x)=0$
の相異なる解の総和は$p,q$によらないことを示せ。

2022早稲田大学理工学部過去問
この動画を見る 

三角比の値の範囲(数I)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
次の値の範囲を求めよ。
(1)
$\sin\theta$ $0^{ \circ } \leqq \theta \leqq 180^{ \circ }$

(2)
$\cos\theta$ $0^{ \circ } \leqq \theta \leqq 180^{ \circ }$

(3)
$\tan\theta$ $0^{ \circ } \leqq \theta \lt 90^{ \circ }$
この動画を見る 

2023高校入試数学解説50問目 手強い面積比 神奈川県 別解求む

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
AB:BC=1:2
△IBH:四角形HECF=?
*図は動画内参照

2023神奈川県
この動画を見る 
PAGE TOP