大学入試問題#816「ほぼ直感通り!」 #東京医科大学(2011) - 質問解決D.B.(データベース)

大学入試問題#816「ほぼ直感通り!」 #東京医科大学(2011)

問題文全文(内容文):
すべての正の数$x,y$に対して、不等式
$\displaystyle \frac{K}{x+y} \leq \displaystyle \frac{1}{x}+\displaystyle \frac{49}{y}$
が成り立つような定数$K$の最大値を求めよ。

出典:2011年東京医科大学
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科大学
指導講師: ますただ
問題文全文(内容文):
すべての正の数$x,y$に対して、不等式
$\displaystyle \frac{K}{x+y} \leq \displaystyle \frac{1}{x}+\displaystyle \frac{49}{y}$
が成り立つような定数$K$の最大値を求めよ。

出典:2011年東京医科大学
投稿日:2024.05.11

<関連動画>

【わかりやすく】平均値・中央値・最頻値の求め方を解説!(数学A 整数の性質)

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次のデータは16人の生徒の小テストの点数である。
4,6,5,4,6,3,3,10,4,6,10,6,9,5,5,10
(1)平均値を求めよ。

(2)中央値を求めよ。

(3)最頻値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第5問〜散布図と相関係数と分散

アイキャッチ画像
単元: #データの分析#データの分析#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 下図(※動画参照)は、あるクラスの40人の生徒の数学と理科の試験得点の散布図である。
データ点の近くの数値はそのデータ点の生徒の出席番号である。
(1)数学と理科の合計得点が最も高い生徒の出席番号は$\boxed{\ \ ヒ\ \ }$である。また、数学と理科の得点差の絶対値が最も大きい生徒の出席番号は$\boxed{\ \ フ\ \ }$である。
(2)数学と理科それぞれの得点の平均値を$\bar{x}$, $\bar{y}$、標準偏差を$s_x$, $s_y$、数学と理科の得点の共分散を$s_{xy}$と表すと、これらの数値は以下であった。
$\bar{x}$=67.7, $\bar{y}$=70.9, $s_x$=14.9, $s_y$=11.5, $s_{xy}$=115.7
数学の得点と理科の得点の相関係数は$\boxed{\ \ ヘ\ \ }$である。なお、答えは小数第3位を四捨五入し、小数第2位まで求めなさい。
(3)各生徒の数学の得点を$x_1$, $x_2$, ..., $x_{40}$、理科の得点を$y_1$, $y_2$, ..., $y_{40}$で表す。
数学と理科の合計得点$x_1$+$y_1$, $x_2$+$y_2$, ..., $x_{40}$+$y_{40}$の平均値は$\bar{x}$, $\bar{y}$を用いると$\boxed{\ \ ホ\ \ }$と表せる。合計得点の分散は、
$\displaystyle\frac{1}{40}\sum_{i=1}^{40}\left(x_i+y_i-\boxed{\ ホ\ }\right)^2$
であるから、これを式変形すると、合計得点の分散は、$s_x$, $s_y$, $s_{xy}$を用いて$\boxed{\ \ マ\ \ }$と表せる。これらの式に(2)で与えられた数値を入れて計算すると、数学と理科の合計得点の平均値は$\boxed{\ \ ミ\ \ }$、分散は$\boxed{\ \ ム\ \ }$である。なお、答えは小数第2位を四捨五入し、小数第1位まで求めなさい。
この動画を見る 

福田の数学〜名古屋大学2024年文系第2問〜放物線と直線の関係

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $t$を0でない実数として、$x$の関数$y$=$-x^2$+$tx$+$t$ のグラフを$C$とする。
(1)$C$上において$y$座標が最大となる点Pの座標を求めよ。
(2)Pと点O(0,0)を通る直線を$l$とする。$l$と$C$がP以外の共有点Qを持つために$t$が満たすべき条件を求めよ。また、そのとき、点Qの座標を求めよ。
(3)$t$は(2)の条件を満たすとする。A(-1,-2)として、$X$=$\displaystyle\frac{1}{4}t^2$+$t$ とおくとき、AP$^2$-AQ$^2$を$X$で表せ。また、AP<AQとなるために$t$が満たすべき条件を求めよ。
この動画を見る 

【数Ⅰ】【数と式】1次不等式の利用1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のものを求めよ。
(1)不等式5(x-3)<-2(x-14)を満たす最大の整数x
(2)不等式x/2+4/3≧x-2/3を満たす自然数xの個数

不等式2x-3>a+8xについて、次の問いに答えよ。
(1)解がx<1となるように、定数aの値を定めよ。
(2)解がx=0を含むように、定数aの値の範囲を定めよ。
(3)この不等式を満たすxのうち、最大の整数が0となるように、定数aの値の範囲を定めよ。

aを定数とするとき、次の方程式、不等式を解け。
(1)ax=1
(2)ax≦2
(3)ax+6>3x+2a
この動画を見る 

17東京都教員採用試験(数学 1-2 方程式)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#整式の除法・分数式・二項定理#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣-(2)
$x^3+\frac{1}{x^3}=0$のとき、$x+\frac{1}{x}$の値を求めよ。
この動画を見る 
PAGE TOP