福田の数学〜立教大学2021年理学部第1問(1)〜正六角形の対角線ベクトルの内積 - 質問解決D.B.(データベース)

福田の数学〜立教大学2021年理学部第1問(1)〜正六角形の対角線ベクトルの内積

問題文全文(内容文):
${\Large\boxed{1}}$(1)1辺の長さが1の正六角形の頂点を反時計回りにA,B,C,D,E,Fとする。
このとき、2つのベクトル$\overrightarrow{ AC },\overrightarrow{ AD }$の内積$\overrightarrow{ AC }・\overrightarrow{ AD }$の値は$\boxed{\ \ ア\ \ }$である。

2021立教大学理学部過去問
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)1辺の長さが1の正六角形の頂点を反時計回りにA,B,C,D,E,Fとする。
このとき、2つのベクトル$\overrightarrow{ AC },\overrightarrow{ AD }$の内積$\overrightarrow{ AC }・\overrightarrow{ AD }$の値は$\boxed{\ \ ア\ \ }$である。

2021立教大学理学部過去問
投稿日:2021.10.02

<関連動画>

【わかりやすく】ベクトルの成分の成分計算(数学B/平面ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\vec{ a }=(-1,2),\vec{ b }=(2,-3)$のとき、次のベクトルを成分で表し、その大きさを求めよ。
(1)$2\vec{ a }$
(2)$-3\vec{ b }$
(3)$\vec{ a }+\vec{ b }$
(4)$3\vec{ b }-\vec{ a }$
この動画を見る 

【高校数学】 数B-20 位置ベクトル①

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2点$A(\vec{ a })$、$B(\vec{ a })$を結ぶ線分ABを
m:nに内分する点$P(\vec{ p })$と、m:nに外分する点$Q(\vec{ q })$は

$\overrightarrow{ p }=$①____________

$\overrightarrow{ q }=$②____________

2点A、Bを結ぶ線分ABについて、次の点の位置ベクトルを$\vec{ a }$、$\vec{ b }$で表そう。

③2:3に内分する点

⑤3:4に外分する点

④4:1に外分する点

⑥中点
この動画を見る 

福田の数学〜明治大学2022年理工学部第3問〜平行六面体の対角線を軸とした回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#微分法と積分法#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
右の図(※動画参照)のような平行六面体OABC-DEFGにおいて、
すべての辺の長さは1であり、$\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }$のどの
2つのなす角も$\frac{\pi}{3}$であるとする。
(1)$\overrightarrow{ OF }$を$\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }$を用いて表すと、
$\overrightarrow{ OF }= \boxed{き}$である。
(2)$|\overrightarrow{ OF }|,\ \cos \angle AOF$を求めると$|\overrightarrow{ OF }|= \boxed{く},$
$\ \cos \angle AOF=\boxed{け}$である。
(3)三角形ACDを底面とする三角錐OACDを、直線OFの周りに1回転して
できる円錐の体積は$\boxed{こ}$である。
(4)対角線OF上に点Pをとり、$|\overrightarrow{ OP }|=t$とおく。点Pを通り、$\overrightarrow{ OF }$に垂直な平面
をHとする。平行六面体$OABC-DEFG$を平面Hで切った時の断面が六角形
となるようなtの範囲は$\boxed{さ}$である。このとき、平面Hと辺AEの交点をQ
として、$|\overrightarrow{ AQ }|$をtの式で表すと$|\overrightarrow{ AQ }|=\boxed{し}$である。
また、$|\overrightarrow{ PQ }|^2$を$t$の式で表すと
$|\overrightarrow{ PQ }|^2=|\overrightarrow{ OQ }|^2-|\overrightarrow{ OP }|^2=\boxed{す}$
である。
(5)平行六面体$OABC-DEFG$を、直線OFの周りに1回転してできる回転体
の体積は$\boxed{こ}$である。

2022明治大学理工学部過去問
この動画を見る 

【数B】ベクトル:ベクトルの基本⑪平面ベクトルのときの三角形の面積の計算

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点$A(-2,1),B(3,0),C(2,4)$が与えられたとき、三角形ABCの面積を求めよ
この動画を見る 

福田の一夜漬け数学〜平面ベクトル(2)〜受験編・文理共通

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
点Oを中心とし、半径1の円に内接する$\triangle ABC$が
$\overrightarrow{ OA }+\sqrt3\overrightarrow{ OB }+2\overrightarrow{ OC }=\overrightarrow{ 0 }$ を満たしている。
(1)内積$\overrightarrow{ OA }・\overrightarrow{ OB }, \overrightarrow{ OA }・\overrightarrow{ OC }$を求めよ。
(2)$\triangle ABC$ の面積を求めよ。
(3)辺$BC$の長さ、および頂点Aから
辺$BC$に引いた垂線の長さを求めよ。
この動画を見る 
PAGE TOP