福田の数学〜立教大学2021年理学部第1問(1)〜正六角形の対角線ベクトルの内積 - 質問解決D.B.(データベース)

福田の数学〜立教大学2021年理学部第1問(1)〜正六角形の対角線ベクトルの内積

問題文全文(内容文):
${\Large\boxed{1}}$(1)1辺の長さが1の正六角形の頂点を反時計回りにA,B,C,D,E,Fとする。
このとき、2つのベクトル$\overrightarrow{ AC },\overrightarrow{ AD }$の内積$\overrightarrow{ AC }・\overrightarrow{ AD }$の値は$\boxed{\ \ ア\ \ }$である。

2021立教大学理学部過去問
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)1辺の長さが1の正六角形の頂点を反時計回りにA,B,C,D,E,Fとする。
このとき、2つのベクトル$\overrightarrow{ AC },\overrightarrow{ AD }$の内積$\overrightarrow{ AC }・\overrightarrow{ AD }$の値は$\boxed{\ \ ア\ \ }$である。

2021立教大学理学部過去問
投稿日:2021.10.02

<関連動画>

数検準1級1次(3番 ベクトル)

単元: #数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$ $\vert \overrightarrow{ a }\vert=\vert \overrightarrow{ b }\vert,\vert \overrightarrow{ c }\vert=1$
$\vert \overrightarrow{ a }\vert \perp \vert \overrightarrow{ b }\vert,\vert \overrightarrow{ b }\vert \perp \vert \overrightarrow{ c }\vert,\vert \overrightarrow{ c }\vert \perp \vert \overrightarrow{ a}\vert$のとき,

$\vert \overrightarrow{ x }\vert=\vert \overrightarrow{ a }\vert+2\vert \overrightarrow{ b }\vert+3\vert \overrightarrow{ c }\vert$
$\vert \overrightarrow{ y }\vert=3\vert \overrightarrow{ a }\vert+\vert \overrightarrow{ b }\vert-2\vert \overrightarrow{ c }\vert$
のなす角$\theta$に対して$\cos\theta$の値を求めよ.
この動画を見る 

【数C】【平面上のベクトル】ベクトルの内積1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす2つのベクトル$\vec{ a }$ ,$\vec{ b }$のなす角θを求めよ。
(1) $| \vec{ a } |=2$ ,$|\vec{ b }|=1$ ,$|3\vec{ a }+2\vec{ b } |=2\sqrt{7}$
(2) $| \vec{ a } |=4$ ,$|2\vec{ a } -\vec{ b } |=7$ ,$(\vec{ a } +\vec{ b } )·(\vec{ b } -3\vec{ a } )=-43$
この動画を見る 

【高校数学】 数B-45 位置ベクトルと図形①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$A(\overrightarrow{a}),B(\overrightarrow{b}),C(\overrightarrow{c}),D(\overrightarrow{d})$を頂点とする四面体の辺$BC$を$3:1$に内分する点を
$P,DP$を$4:3$に外分する点を$Q$,線分$AQ$の中点を$R$とする.
点$P$,点$Q$,点$R$の位置ベクトルを,$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c},\overrightarrow{d}$で表そう.

②四面体$OABC$がある.線分$AB$を$2:3$に内分する点を$P$,
線分$OP$を$10:1$に外分する点を$Q$,線分$CQ$を$3:1$に内分する点を$R$とする.
$\triangle ARB$の重心を$G$とするとき,
$\overrightarrow{OG}$を$\overrightarrow{OA}=\large{\overrightarrow{a}}=\overrightarrow{OB}=\large{\overrightarrow{b}},\overrightarrow{OC},\large{\overrightarrow{c}}$で表そう.
この動画を見る 

【数C】ベクトルの基本⑩三角形の面積の公式2パターン

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルを用いた三角形の面積の公式
この動画を見る 

【数学B/平面ベクトル】ベクトルの大きさの最小値を求める

アイキャッチ画像
単元: #平面上のベクトル#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\vec{ a }=(3,-2),\vec{ b }=(1,-2)$のとき、$|\vec{ a }+t\vec{ b }|$の最小値とそのときの実数$t$の値を求めよ。
この動画を見る 
PAGE TOP